精英家教网 > 高中数学 > 题目详情

【题目】本小题满分为16A,B分别为椭圆的左、右顶点,椭圆的长轴长为,且点在该椭圆上.

1求椭圆的方程;

2为直线上不同于点的任意一点,若直线与椭圆相交于异于的点,证明:为钝角三角形.

【答案】12详见解析

【解析】

试题分析:1求椭圆的方程一般利用待定系数法求解,本题两个独立条件可求出方程中两个未知数,关键长轴长为的条件不能列错,2证明为钝角三角形,可利用向量数量积求证:,这样只需列出各点坐标即可.

试题解析:1由题意:,所以.所求椭圆方程为

又点在椭圆上,可得.所求椭圆方程为

2证明:由1知:.设

则直线的方程为:

因为直线与椭圆相交于异于的点

所以,所以

,得.所以

从而

所以

三点不共线,所以为钝角.

所以为钝角三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017重庆二诊】已知函数,设关于的方程个不同的实数解,则的所有可能的值为(

A. 3 B. 1或3 C. 4或6 D. 3或4或6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列对应值如表:

x

y

﹣1

1

3

1

﹣1

1

3


(1)根据表格提供的数据求函数f(x)的一个解析式;
(2)根据(1)的结果:
( i)当x∈[0, ]时,方程f(3x)=m恰有两个不同的解,求实数m的取值范围;
( ii)若α,β是锐角三角形的两个内角,试比较f(sinα)与f(cosβ)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A( +1,0),B(0,2).若直线l:y=k(x﹣1)+1与线段AB相交,则直线l倾斜角α的取值范围是(
A.[ ]
B.[0, ]
C.[0, ]∪[ ,π)
D.[ ,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣2ax+1+lnx
(1)当a=0时,若函数f(x)在其图象上任意一点A处的切线斜率为k,求k的最小值,并求此时的切线方程;
(2)若函数f(x)的极大值点为x1 , 证明:x1lnx1﹣ax12>﹣1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为正方形,AA1=2AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)在平面直角坐标系中,已知椭圆的离心率,直线过椭圆的右焦点,且交椭圆两点.

1)求椭圆的标准方程;

2)已知点,连结,过点作垂直于轴的直线,设直线与直线交于点,试探索当变化时,是否存在一条定直线,使得点恒在直线上?若存在,请求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列不等式中解集为实数集R的是(
A.x2+4x+4>0
B.
C.x2﹣x+1≥0
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分16分)如图,在平面直角坐标系中,离心率为的椭圆 的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点.若直线斜率为时,

1)求椭圆的标准方程;

2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.

查看答案和解析>>

同步练习册答案