精英家教网 > 高中数学 > 题目详情

【题目】圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=(  )
A.﹣
B.﹣
C.
D.2

【答案】A
【解析】解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y﹣1=0的距离d= =1,解得:a=
故选:A.
【考点精析】掌握点到直线的距离公式和圆的一般方程是解答本题的根本,需要知道点到直线的距离为:;圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:

年份

2007

2008

2009

2010

2011

2014

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9


(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足|an |≤1,n∈N*
(1)求证:|an|≥2n1(|a1|﹣2)(n∈N*
(2)若|an|≤( n , n∈N* , 证明:|an|≤2,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性 ;

(2)若对任意恒成立,求实数的取值范围;

(3)当时,若函数有两个极值点,求

的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设锐角三角形的内角A,B,C的对边分别为a、b、c,且sinA-cosC=cos(A-B).

(1)求B的大小;

(2)求cosA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(x∈R)满足f(x)=f(2﹣x),若函数y=|x2﹣2x﹣3|与 y=f(x) 图象的交点为(x1 , y1),(x2 , y2),…,(xm , ym),则 xi=(  )
A.
B.m
C.2m
D.4m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x+1)lnx﹣a(x﹣1).
(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知1是函数f(x)=ax2+bx+c(a>b>c)的一个零点,若存在实数x0.使得f(x0)<0.则f(x)的另一个零点可能是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得.

(1)求家庭的月储蓄y对月收入x的线性回归方程

(2)判断变量xy之间是正相关还是负相关;

(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

附:线性回归方程中,

,其中为样本平均值.

查看答案和解析>>

同步练习册答案