精英家教网 > 高中数学 > 题目详情

【题目】己知函数处的切线方程为,函数.

(1)求函数的解析式;

(2)求函数的极值;

(3)设表示中的最小值),若上恰有三个零点,求实数的取值范围.

【答案】(1);(2)极小值,无极大值.(3)

【解析】

1)先求得函数导数,利用切点坐标和函数在时切线的斜率也即导数列方程组,解方程组求得的值,进而求得函数的解析式.2)先求得的定义域和导函数,对分成两种情况,通过函数的单调性讨论函数的极值.3)先根据(1)判断出有且仅有一个零点,故需上有仅两个不等于1的零点.根据(2)判断出当时,没有三个零点;当时,通过零点存在性定理以及利用导数的工具作用,证得分别在分别有个零点,符合题意.由此求得实数的取值范围.

解:(1)

因为处的切线方程为

所以

解得

所以

(2)的定义域为

①若时,则上恒成立,

所以上单调递增,无极值

②若时,则当时,上单调递减;

时,上单调递增;

所以当时,有极小值,无极大值.

(3)因为仅有一个零点1,且恒成立,

所以上有仅两个不等于1的零点.

①当时,由(2)知,上单调递增,

上至多一个零点,不合题意,舍去

②当时,无零点

③当时,,当且仅当等号成立,仅一个零点

④当时,,所以

图象不间断,上单调递减

故存在,使

下面证明,当时,

上单调递增

所以

图象在上不间断,上单调递增,

故存在,使

综上可知,满足题意的的范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆的圆心的坐标为,且圆与直线相切,过点的动直线与圆相交于两点,直线与直线的交点为.

(1)求圆的标准方程;

(2)求的最小值;

(3)问:是否是定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某“双一流”大学专业奖学金是以所学专业各科考试成绩作为评选依据,分为专业一等奖学金、专业二等奖学金及专业三等奖学金,且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校名学生周课外平均学习时间频率分布直方图,图(2)是这名学生在年周课外平均学习时间段获得专业奖学金的频率柱状图.

(Ⅰ)求这名学生中获得专业三等奖学金的人数;

(Ⅱ)若周课外平均学习时间超过小时称为“努力型”学生,否则称为“非努力型”学生,列联表并判断是否有的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次跳绳活动中,某学校从高二年级抽取了100位同学一分钟内跳绳,由测量结果得到如图所示的频率分布直方图,落在区间[140150),[150160),[160170]内的频率之比为421.

1)求跳绳次数落在区间[150160)内的频率;

2)用分层抽样的方法在区间[130160)内抽取6位同学,将该样本看成一个总体,从中任意抽取2位同学,求这2位同学跳绳次数都在区间[130150)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 在点处的切线与直线平行,且函数有两个零点.

(1)求实数的值和实数的取值范围;

(2)记函数的两个零点为求证: 其中为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别为内角的对边.已知,且,则( )

A. 1B. 2C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圈的左、右焦点,是椭圆上第二象限内的一点且轴垂直,直线与椭圆的另一个交点为.

1)若直线的斜率为,求椭圆的离心率;

2)若直线轴的交点为,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个小球放入一长方形容器内,且与有公共顶点的三个面相接触,若小球上一点到这三个面的距离分别为455,则该小球的半径是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形, 的中点。

1)证明: 平面;

2)设 ,三棱锥的体积 ,求A到平面PBC的距离。

查看答案和解析>>

同步练习册答案