精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=lg($\frac{1}{x}$-1),x∈(0,$\frac{1}{2}$),若x1,x2∈(0,$\frac{1}{2}$)且x1≠x2,求证:$\frac{1}{2}$[f(x1)+f(x2)]>f($\frac{{x}_{1}+{x}_{2}}{2}$).

分析 代入函数解析式,使用作差法证明.

解答 解:假设0<x1<x2$<\frac{1}{2}$,
f(x1)+f(x2)-2f($\frac{{x}_{1}+{x}_{2}}{2}$)=lg($\frac{1}{{x}_{1}}$-1)+lg($\frac{1}{{x}_{2}}$-1)-lg($\frac{2}{{x}_{1}+{x}_{2}}-1$)2
=lg($\frac{1}{{x}_{1}}$-1)($\frac{1}{{x}_{2}}$-1)-lg($\frac{2}{{x}_{1}+{x}_{2}}-1$)2
($\frac{1}{{x}_{1}}$-1)($\frac{1}{{x}_{2}}$-1)-($\frac{2}{{x}_{1}+{x}_{2}}-1$)2=$\frac{({x}_{1}-{x}_{2})^{2}(1-{x}_{1}-{x}_{2})}{{x}_{1}{x}_{2}({x}_{1}+{x}_{2})^{2}}$.
∵0<x1<x2$<\frac{1}{2}$,∴1-x1-x2>0,∴($\frac{1}{{x}_{1}}$-1)($\frac{1}{{x}_{2}}$-1)-($\frac{2}{{x}_{1}+{x}_{2}}-1$)2>0,
∴($\frac{1}{{x}_{1}}$-1)($\frac{1}{{x}_{2}}$-1)>($\frac{2}{{x}_{1}+{x}_{2}}-1$)2>0,
∴lg($\frac{1}{{x}_{1}}$-1)($\frac{1}{{x}_{2}}$-1)>lg($\frac{2}{{x}_{1}+{x}_{2}}-1$)2
即lg($\frac{1}{{x}_{1}}$-1)($\frac{1}{{x}_{2}}$-1)-lg($\frac{2}{{x}_{1}+{x}_{2}}-1$)2>0,
∴f(x1)+f(x2)-2f($\frac{{x}_{1}+{x}_{2}}{2}$)>0,
∴$\frac{1}{2}$[f(x1)+f(x2)]>f($\frac{{x}_{1}+{x}_{2}}{2}$).

点评 本题考查了不等式的证明,使用作差法证明是证明不等式的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.f(x)是定义域在R上的增函数:且满足f($\frac{x}{y}$)=f(x)-f(y).
(1)求f(1)的值:
(2)若f(6)=1,求方程f(x)=2的解;
(3)若f(6)=1,解不等式f(x+2)-f($\frac{1}{x}$)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设O为坐标原点,若点A的坐标为(-1,3),则$\overrightarrow{OA}$的坐标是(  )
A.(1,3)B.(3,-1)C.(1,-3)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.从(0,1)中随机取出两个数,求下列事件的概率:
(1)两数的和大于1.2;
(2)两数的平方和小于0.25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知Sn是各项为正数的等比数列{an}的前n项和,a2•a4=16,S3=7,则a8=(  )
A.32B.64C.128D.256

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知锐角△ABC中,角α+$\frac{π}{6}$的终边过点P(sinB-cosA,cosB-sinA),且cos(α+$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,则cos2α的值为(  )
A.$\frac{\sqrt{3}-\sqrt{2}}{6}$B.-$\frac{\sqrt{2}}{3}$-$\frac{1}{6}$C.$\frac{1}{2}$-$\frac{\sqrt{3}}{6}$D.-$\frac{\sqrt{6}}{3}$-$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+bx+1,若f(x)在[-1,1]单调递减,则f($\frac{1}{2}$)的最大值为$\frac{9}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知O为坐标原点,A,B为双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上两点,且$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{0}$,若双曲线C上与A,B两点横坐标不相同的任意一点P,满足kPA•kPB=2(k表示直线的斜率0),则双曲线C的离心率为(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案