精英家教网 > 高中数学 > 题目详情
已知函数y1=loga(2x+4),y2=loga(5-3x)(a>0,a≠1)
(1)求使y1=y2的x的值;
(2)求使y1>y2的x的取值集合.
【答案】分析:(1)先根据函数的定义域可得到2x+4>0,5-3x>0求出x的范围,再令2x+4=5-3x,可求出x的值.
(2)对a分两种情况,结合对数函数的单调性进行讨论,可确定x的范围.
解答:解:(1)根据题意可知解得
(2)当a>1时
解得{x|}
当0<a<1时
解得{x|-2<x<}
点评:本题主要考查对数函数的定义域和对数函数的单调性--当底数大于1时单调增,当底数大于0小于1时单调递减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y1=loga(2x+4),y2=loga(5-3x)(a>0,a≠1)
(1)求使y1=y2的x的值;
(2)求使y1>y2的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(ax-1)(a>0,且a≠1)
(1)求此函数的定义域;
(2)已知A(x1,y1),B(x2,y2)为函数y=loga(ax-1)图象上任意不同的两点,若a>1,求证:直线AB的斜率大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y1=loga(2x+4),y2=loga(5-3x)(a>0,a≠1)
(1)求使y1=y2的x的值;
(2)求使y1>y2的x的取值集合.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数y1=loga(2x+4),y2=loga(5-3x)(a>0,a≠1)
(1)求使y1=y2的x的值;
(2)求使y1>y2的x的取值集合.

查看答案和解析>>

同步练习册答案