精英家教网 > 高中数学 > 题目详情

【题目】已知的两个顶点的坐标分别为,且所在直线的斜率之积等于,记顶点的轨迹为.

Ⅰ)求顶点的轨迹的方程;

Ⅱ)若直线与曲线交于两点,点在曲线上,且的重心(为坐标原点),求证:的面积为定值,并求出该定值.

【答案】(Ⅰ)Ⅱ)证明见解析,定值为.

【解析】

(Ⅰ)设,根据题意列方程即可求解.

(Ⅱ)设,由的重心,可得,从而,将直线与椭圆方程联立整理利用韦达定理求出点坐标,代入椭圆方程可得,再利用弦长公式以及三角形的面积公式即可求解.

(Ⅰ)设

因为点的坐标为,所以直线的斜率为

同理,直线的斜率为

由题设条件可得,.

化简整理得,顶点的轨迹的方程为:.

Ⅱ)设

因为的重心,所以

所以

又点在椭圆上,所以

因为的重心,所以倍,

原点到直线的距离为

.

所以

所以,的面积为定值,该定值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】双曲线E)的左、右焦点分别为,已知点为抛物线C的焦点,且到双曲线E的一条渐近线的距离为,又点P为双曲线E上一点,满足.

1)双曲线的标准方程为______

2的内切圆半径与外接圆半径之比为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,为棱上的动点.

1)若的中点,求证:平面

2)若平面平面ABC,且是否存在点,使二面角的平面角的余弦值为?若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的单调区间;

2)证明:(i

ii)对任意恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校为增加应届毕业生就业机会,每年根据应届毕业生的综合素质和学业成绩对学生进行综合评估,已知某年度参与评估的毕业生共有2000名.其评估成绩近似的服从正态分布.现随机抽取了100名毕业生的评估成绩作为样本,并把样本数据进行了分组,绘制了如下频率分布直方图:

1)求样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);

2)若学校规定评估成绩超过82.7分的毕业生可参加三家公司的面试.

用样本平均数作为的估计值,用样本标准差作为的估计值.请利用估计值判断这2000名毕业生中,能够参加三家公司面试的人数;

附:若随机变量,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设常数,函数

(1)当时,判断上单调性,并加以证明;

(2)当时,研究的奇偶性,并说明理由;

(3)当时,若存在区间使得上的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面,四边形是矩形,分别是棱的中点.

(1)求证:平面

(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,对于给定的正整数,记.若对任意的正整数满足:,且是等差数列,则称数列为“”数列.

(1)若数列的前项和为,证明:数列;

(2)若数列数列,且,求数列的通项公式;

(3)若数列数列,证明:是等差数列 .

查看答案和解析>>

同步练习册答案