【题目】已知:椭圆 (a>b>0),过点 , 的直线倾斜角为 ,原点到该直线的距离为 .
(1)求椭圆的方程;
(2)斜率大于零的直线过 与椭圆交于E,F两点,若 ,求直线EF的方程.
科目:高中数学 来源: 题型:
【题目】已知具有相关关系的两个变量之间的几组数据如下表所示:
(1)请根据上表数据在网格纸中绘制散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计当时, 的值;
(3)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取3个点,记落在直线右下方的点的个数为,求的分布列以及期望.
参考公式: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的偶函数,其导函数为,若对任意的实数,都有恒成立,则使成立的实数的取值范围为( )
A. B. (﹣∞,﹣1)∪(1,+∞)
C. (﹣1,1) D. (﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(1+x),g(x)=loga(1﹣x)其中(a>0且a≠1),设h(x)=f(x)﹣g(x).
(1)求函数h(x)的定义域,判断h(x)的奇偶性,并说明理由;
(2)若f(3)=2,求使h(x)<0成立的x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的奇函数f(x),当x∈(﹣∞,0)时,f(x)=﹣x2+mx﹣1.
(1)求f(x)的解析式;
(2)若方程f(x)=0有五个不相等的实数解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,AD∥BC,AD=AB=DC=BC=1,E是PC的中点,面PAC⊥面ABCD.
(1)证明:ED∥面PAB;
(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列是各项均为正数的等比数列,其前项和为,且.
(1)求数列的通项公式;
(2)设有正整数,使得成等差数列,求的值;
(3)设,对于给定的,求三个数经适当排序后能构成等差数列的充要条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com