【题目】已知函数f(x)= x2+lnx.
(1)求函数f(x)的单调区间;
(2)求证:当x>1时, x2+lnx< x3 .
【答案】
(1)解:依题意知函数的定义域为{x|x>0},
∵f′(x)=x+ ,∴f′(x)>0,
∴f(x)的单调增区间为(0,+∞)
(2)证明:设g(x)= x3﹣ x2﹣lnx,
∴g′(x)=2x2﹣x﹣ ,
∵当x>1时,g′(x)= >0,
∴g(x)在(1,+∞)上为增函数,
∴g(x)>g(1)= >0,
∴当x>1时, x2+lnx< x3
【解析】(1)确定函数的定义域,求导函数,可得导数的正负,即可得到函数的单调区间;(2)构造函数g(x)= x3﹣ x2﹣lnx,确定g(x)在(1,+∞)上为增函数,即可证得结论.
【考点精析】掌握利用导数研究函数的单调性和函数的最大(小)值与导数是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N* .
(1)若2a2 , a3 , a2+2成等差数列,求数列{an}的通项公式;
(2)设数列{bn}满足bn= ,且b2= ,证明:b1+b2++bn> .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为 .
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)所示,已知四边形是由直角△和直角梯形拼接而成的,其中
.且点为线段的中点, , 现将△沿进行翻折,使得二面角
的大小为,得到图形如图(2)所示,连接,点分别在线段上.
(1)证明: ;
(2)若三棱锥的体积为四棱锥体积的,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某基建公司年初以100万元购进一辆挖掘机,以每年22万元的价格出租给工程队.基建公司负责挖掘机的维护,第一年维护费为2万元,随着机器磨损,以后每年的维护费比上一年多2万元,同时该机器第x(x∈N* , x≤16)年末可以以(80﹣5x)万元的价格出售.
(1)写出基建公司到第x年末所得总利润y(万元)关于x(年)的函数解析式,并求其最大值;
(2)为使经济效益最大化,即年平均利润最大,基建公司应在第几年末出售挖掘机?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com