【题目】如图,四棱锥的底面是菱形,与交于点,底面,点为线段中点,.
(1)求直线与所成角的正弦值;
(2)求平面与平面所成二面角的正弦值.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:(a>b>0)的离心率为,且过点(1,).
(1)求椭圆C的方程;
(2)设与圆O:x2+y2=相切的直线l交椭圆C于A,B两点,求△OAB面积的最大值,及取得最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(I)在答题卡上作出这些数据的频率分布直方图:
(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数为定义在上的奇函数,且当时,.
(1)求函数的解析式;
(2)求实数,使得函数在区间上的值域为;
(3)若函数在区间上的值域为,则记所有满足条件的区间的并集为,设,问是否存在实数,使得集合恰含有个元素?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式。最新调查表明,人们对于投资理财的兴趣逐步提高。某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下:
①投资产品的收益与投资额的算术平方根成正比;
②投资产品的收益与投资额成正比.
公司提供了投资1万元时两种产品的收益,分别是0.4万元和0.2万元。
(1) 分别求出产品的收益、产品的收益与投资额的函数关系式;
(2) 假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
项目 | 男性 | 女性 | 总计 |
反感 | 10 | ||
不反感 | 8 | ||
总计 | 30 |
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.
(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
附:K2=
.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】20世纪30年代,里克特(C.F.Richter)制定了一种表明地震能量大小的尺度,就是使用测震仪地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M,其计算公式为其中,A是被测量地震的最大振幅,是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际的距离造成的偏差),众所周知,5级地震已经比较明显,计算8级地震的最大振幅是5级地震的最大振幅的______倍.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com