精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2 , x∈R,则实数a= , b=

【答案】-2;1
【解析】解:∵f(x)=x3+3x2+1,
∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)
=x3+3x2﹣(a3+3a2
∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x﹣a2b,
且f(x)﹣f(a)=(x﹣b)(x﹣a)2
,解得 (舍去),
故答案为:﹣2;1.
根据函数解析式化简f(x)﹣f(a),再化简(x﹣b)(x﹣a)2 , 根据等式两边对应项的系数相等列出方程组,求出a、b的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+2(a﹣1)x+2在区间[﹣1,2]上单调,则实数a的取值范围为(
A.[2,+∞)
B.(﹣∞,﹣1]
C.(﹣∞,﹣1]∪[2,+∞)
D.(﹣∞,﹣1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=log (x2﹣2x)的单调递增区间是(
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y= +lg(﹣x2+4x﹣3)的定义域为M,
(1)求M;
(2)当x∈M时,求函数f(x)=a2x+2+34x(a<﹣3)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形, .

(Ⅰ)证明: 平面

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)画出函数f(x)图象;
(2)求f(﹣a2﹣1)(a∈R),f(f(3))的值;
(3)当﹣4≤x<3时,求f(x)取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产A,B两种产品,根据市场调查与市场预测,A产品的利润与投资成正比,其关系如图(1);B产品的利润与投资的算术平方根成正比,其关系如图(2)(注:所示图中的横坐标表示投资金额,单位为万元)

(1)分别求出A,B两种产品的利润表示为投资的函数关系式;
(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C是椭圆M: =1(a>b>0)上的三点,其中点A的坐标为 ,BC过椭圆M的中心,且
(1)求椭圆M的方程;
(2)过点(0,t)的直线l(斜率存在时)与椭圆M交于两点P、Q,设D为椭圆M与y轴负半轴的交点,且 ,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届湖北省黄冈市高三上学期期末考试第16题) “中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”. “中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为__________

查看答案和解析>>

同步练习册答案