精英家教网 > 高中数学 > 题目详情

【题目】海面上漂浮着七个岛屿,岛与岛之间都没有桥连接,小昊住在岛,小皓住在.现政府计划在这七个岛之间建造座桥(每两个岛之间至多建造一座桥).,则桥建完后,小吴和小皓可以往来的概率为______;若,则桥建完后,小昊和小皓可以往来的概率为______.

【答案】

【解析】

利用古典概型、排列组合直接求解.

七个岛之间两两连接共可以有条线路,在这21条线路中

,若只建一座桥,则有21种建法,则桥建完后,小吴和小皓可以往来的概率为

,则桥建完后,小昊和小皓可以往来可以的情况有:

若A岛和B岛连接,其余任选2条线路建桥,共有种方法,

若A岛和B岛不连接,再选一个岛,与A岛和B岛都连接,再在其他18条线路种选一条建桥,则有种方法,

若A岛和B岛不连接,再选两个岛,与A岛和B岛连接,共建3座桥,共有种方法,

∴若,则桥建完后,小昊和小皓可以往来的概率为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),以为极点,轴的非负半轴为极轴建极坐标系,直线的极坐标方程为

(Ⅰ)求的极坐标方程;

(Ⅱ)射线与圆C的交点为与直线的交点为,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的直角坐标方程;

2)已知点,直线轴正半轴交于点,与曲线交于两点,且成等比数列,求直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,内角的对边分别是,且满足:.

)求角的大小;

(Ⅱ)若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与直角坐标系的原点重合,极轴与轴的正半轴重合,曲线的极坐标方程是,直线的参数方程是为参数).

1)若是圆上一动点,求点到直线的距离的最小值和最大值;

2)直线关于原点对称,且直线截曲线的弦长等于,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.广元某景点设有共享电动车租车点,共享电动车的收费标准是每小时2元(不足1小时的部分按1小时计算).甲、乙两人各租一辆电动车,若甲、乙不超过一小时还车的概率分别为;一小时以上且不超过两小时还车的概率分别为;两人租车时间都不会超过三小时.

1)求甲、乙两人所付租车费用相同的概率;

2)求甲、乙两人所付的租车费用之和大于或等于8的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出如下四个命题:①若p为假命题,则pq均为假命题;②命题a>b,则的否命题为ab,则;③xR的否定是;④在ABC中,A>B的充要条件;其中正确的命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数浓度,制定了空气质量标准:

空气污染质量

空气质量等级

轻度污染

中度污染

重度污染

严重污染

某市政府为了打造美丽城市,节能减排,从2010年开始考查了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016111日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号为字母的,前13个视为单号,后13个视为双号).

1)某人计划11月份开车出行,求因空气污染被限号出行的概率;

2)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行三年来的11月份共90天的空气质量进行统计,其结果如表:

空气质量

轻度污染

中度污染

重度污染

严重污染

天数

16

39

18

10

5

2

根据限行前180天与限行后90天的数据,计算并填写列联表,并回答是否有的把握认为空气质量的优良与汽车尾气的排放有关.

空气质量优良

空气质量污染

合计

限行前

限行后

合计

参考数据:

其中

查看答案和解析>>

同步练习册答案