精英家教网 > 高中数学 > 题目详情
3.2016年3月31日贵州省第十二届人民代表大会常务委员会第二十一次会议通过的《贵州省人口与计划生育条例》全面开放二孩政策.为了了解人们对于贵州省新颁布的“生育二孩放开”政策的热度,现在某市进行调查,对[5,65]岁的人群随机抽取了n人,得到如下统计表和各年龄段抽取人数频率分布直方图:
 分组 支持“生育二孩”人数 占本组的频率
[5,15) 4 0.8
[15,25) 5 p
[2,35) 12 0.8
[35,45) 8 0.8
[45,55) 2 0.4
[55,65) 1 0.2
(1)求n,p的值;
(2)根据以上统计数据填下面2×2列联表,并根据列联表的独立性检验,能否有99%的把握认为以45岁为分界点对“生育二孩放开”政策的支持度有关系?参考数据:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
年龄不低于45岁的人数年龄低于45岁的人数合计
支持32932
不支持71118
合计104050

分析 (1)求出样本容量,第二组的频率为0.2,人数为10,即可求出概率;
(2)根据以上统计数据填2×2列联表,求出K2,与临界值比较,即可得出结论.

解答 解:(1)[5,15)年龄段抽取的人数为$\frac{4}{0.8}$=5,频率为0.010×10=0.1,
∴n=$\frac{5}{0.1}$=50,
第二组的频率为0.2,人数为10,则p=$\frac{5}{10}$=0.5;
(2)2×2列联表如下

年龄不低于45岁的人数年龄低于45岁的人数合计
支持32932
不支持71118
合计104050
计算K2=$\frac{50(3×11-7×29)^{2}}{10×40×32×18}$≈6.27<7.635,
因此没有99%的把握认为以45岁为分界点对“生育二孩放开”政策的支持度有关系.

点评 本题考查了概率的计算,考查了独立性检验的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若曲线x2+y2+a2x+(1-a2)y-4=0关于直线y=x对称的曲线仍是其本身,则实数a为(  )
A.$\frac{1}{2}$或$-\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$或$-\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$或$-\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$或$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实,黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简,得勾2+股2=弦2,设勾股中勾股比为1:$\sqrt{3}$,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为(  )
A.866B.500C.300D.134

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线y2=4x的焦点到双曲线$\frac{{x}^{2}}{{3}^{\;}}$-y2=1的渐近线的距离是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且$\sqrt{3}a=2csinA$.
(1)确定角C的大小;
(2)若$c=\sqrt{7}$,且△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设变量x,y满足约束条件$\left\{\begin{array}{l}x+2y-4≤0\\ 3x+y-3≥0\\ x-y-1≤0\end{array}\right.$,则$z=\frac{y}{x+1}$的最大值为(  )
A.$\frac{9}{7}$B.$\frac{1}{3}$C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切的圆的圆心在(  )
A.一个圆上B.一个椭圆上C.双曲线的一支上D.一条抛物线上

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若双曲线的顶点为椭圆2x2+y2=2长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是(  )
A.x2-y2=1B.y2-x2=1C.y2-x2=2D.x2-y2=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起如图乙所示的四棱锥P-OBCD,使得PC=$\sqrt{3}$,点E是线段PB上一动点.

(1)证明:DE和PC不可能垂直;
(2)当PE=2BE时,求PD与平面CDE所成角的正弦值.

查看答案和解析>>

同步练习册答案