(本题满分10分)
已知四棱锥的底面为直角梯形,//,,底面,且.
(Ⅰ)证明:平面;
(Ⅱ)求二面角的余弦值的大小.
科目:高中数学 来源: 题型:解答题
正方形ABCD中,点O是对角线AC的中点,点P是对角线AC上一动点.
(1)如图1,当点P在线段OA上运动时(不与点A、O重合) ,PE⊥PB交线段CD于点E,PF⊥CD于点E.
①判断线段DF、EF的数量关系,并说明理由;
②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论;
(2)如图2,当点P在线段OC上运动时(不与点O、C重合),PE⊥PB交直线CD于点E,PF⊥CD于点E.判断(1)中的结论①、②是否成立?若成立,说明理由;若不成立,写出相应的结论并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分11分)
如图示,给出的是某几何体的三视图,其中正视图与侧视图都是边长为2的正三角形,俯视图为半径等于1的圆.试求这个几何体的侧面积与体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)一个多面体的直观图和三视图如图所示,其中、分别是、的中点.
(1)求证:平面
(2)在线段上(含、端点)确定一点,使得平面,并给出证明;
(3)一只小飞虫在几何体内自由飞,求它飞入几何体内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)如图,有三个生活小区(均可看成点)分别位于三点处,,到线段的距离,(参考数据: ). 今计划建一个生活垃圾中转站,为方便运输,准备建在线段(不含端点)上.
(1)设,试将到三个小区距离的最远者表示为的函数,并求的最小值;
(2)设,试将到三个小区的距离之和表示为的函数,并确定当取何值时,可使最小?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,
E、F分别是AB、CD上的点,且EF∥BC.设AE =,G是BC的中点.
沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;
(3)当取得最大值时,求二面角D-BF-E的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com