精英家教网 > 高中数学 > 题目详情

(本题满分10分)
已知四棱锥的底面为直角梯形,//底面,且.
(Ⅰ)证明:平面
(Ⅱ)求二面角的余弦值的大小.

(I)见解析;(II)

解析试题分析:(I)证明平面,在已知的基础上,根据线面垂直的判定定理关键是证明即可.
(II)再(1)的基础上易证,所以可知为所求二面角的平面角,然后解三角形求此角即可.
(I)
………………………………4分;
(II)

………………………………8分;.
为所求二面角的平面角,…………………10分..
考点:线面垂直,线线垂直的判定与性质,二面角.
点评:线面垂直的判定定理:一条直线垂直于这个平面内的两条相交直线,那么这条直线垂直这个平面.线面垂直的性质定理:一条直线垂直这个平面,这条直线垂直这个平面内的任意一条直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

正方形ABCD中,点O是对角线AC的中点,点P是对角线AC上一动点.
(1)如图1,当点P在线段OA上运动时(不与点AO重合) ,PEPB交线段CD于点EPFCD于点E

①判断线段DFEF的数量关系,并说明理由;
②写出线段PCPACE之间的一个等量关系,并证明你的结论;
(2)如图2,当点P在线段OC上运动时(不与点OC重合),PEPB交直线CD于点EPFCD于点E.判断(1)中的结论①、②是否成立?若成立,说明理由;若不成立,写出相应的结论并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分11分)
如图示,给出的是某几何体的三视图,其中正视图与侧视图都是边长为2的正三角形,俯视图为半径等于1的圆.试求这个几何体的侧面积与体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)一个多面体的直观图和三视图如图所示,其中分别是的中点.
(1)求证:平面
(2)在线段上(含端点)确定一点,使得平面,并给出证明;
(3)一只小飞虫在几何体内自由飞,求它飞入几何体内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,有三个生活小区(均可看成点)分别位于三点处,,到线段的距离,(参考数据: ). 今计划建一个生活垃圾中转站,为方便运输,准备建在线段(不含端点)上.

(1)设,试将到三个小区距离的最远者表示为的函数,并求的最小值;
(2)设,试将到三个小区的距离之和表示为的函数,并确定当取何值时,可使最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,
E、F分别是AB、CD上的点,且EF∥BC.设AE =,G是BC的中点.
沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).

(1)当=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;
(3)当取得最大值时,求二面角D-BF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题8分)如图所示,在正三棱柱中,若中点。

(1)证明:平面
(2)求所成的角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中,,是棱的中点,
(1)  证明:
(2)求二面角的大小. (12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥中,侧面⊥底面,底面是边长为的正方形,又分别是的中点.
(Ⅰ)求证:
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案