【题目】已知函数.
(1)求证:当时,函数在上,存在唯一的零点;
(2)当时,若存在,使得成立,求的取值范围.
【答案】(1)见解析;(2)(0,1).
【解析】试题分析:(1)先证明函数在(0,+∞)上单调递增,再根据零点存在定理证明上存在零点即可。(2)“若存在,使得成立”转化为
“”,利用导数可得 ,从而由得,设g(a)=lna+a﹣1,由g(a)的单调性可得当0<a<1时,g(a)<0,故所求范围为(0,1)。
试题解析:
(1)证明:∵, ,
∴,
∵,
∴,
∴函数f(x)在(0,+∞)上单调递增,
又当a≤0时, , ,
所以函数上存在唯一零点。
(2)由(1)得,
∵a>0,
∴当x∈(0, )时,f′(x)>0,f(x)单调递增;
当x∈(,+∞)时,f′(x)<0,f(x)单调递减。
∴在x=时取得最大值,且最大值为。
“存在”等价于
∴,
∴,
令g(a)=lna+a﹣1
∵g(a)在(0,+∞)单调递增,且g(1)=0,
∴当0<a<1时,g(a)<0;当a>1时,g(a)>0。
∴a的取值范围为(0,1)。
科目:高中数学 来源: 题型:
【题目】(某保险公司有一款保险产品的历史户获益率(获益率=获益÷保费收入)的频率分布直方图如图所示:
(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验若每份保单的保费在 元的基础上每增加 元,对应的销量 (万份)与 (元)有较强线性相关关系,从历史销售记录中抽样得到如下 组 与 的对应数据:
(元) | |||||
销量 (万份) |
(ⅰ)根据数据计算出销量 (万份)与 (元)的回归方程为 ;
(ⅱ)若把回归方程 当作 与 的线性关系,用(Ⅰ)中求出的平均获益率估计此产品的获益率,每份保单的保费定为多少元时此产品可获得最大获益,并求出该最大获益.
参考公示:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 的定义域为 ,若函数 满足下列两个条件,则称 在定义域 上是闭函数.① 在 上是单调函数;②存在区间 ,使 在 上值域为 .如果函数 为闭函数,则 的取值范围是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量, (),若,且的图象上两相邻对称轴间的距离为.
(Ⅰ)求的单调递减区间;
(Ⅱ)设的内角, , 的对边分别为, , ,且满足, , ,求, 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程和直线的倾斜角;
(2)设点,直线和曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4,坐标系与参数方程]
在平面直角坐标系中,曲线C的参数方程为 ,以坐标原点为极点,以轴正半轴为极轴建立极坐标系,直线的极坐标方程为。
(1)求直线的直角坐标方程和曲线C的普通方程。
(2)设点P为曲线C上的任意一点,求点P到直线的距离的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在轴上,离心率.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若点为椭圆上一点,直线的方程为,求证:直线与椭圆有且只有一个交点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四棱锥中,已知异面直线与所成的角为,给出下面三个命题:
:若,则此四棱锥的侧面积为;
:若分别为的中点,则平面;
:若都在球的表面上,则球的表面积是四边形面积的倍.
在下列命题中,为真命题的是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018江西莲塘一中、临川二中高三上学期第一次联考】二次函数的图象过原点,对,恒有成立,设数列满足.
(I)求证:对,恒有成立;
(II)求函数的表达式;
(III)设数列前项和为,求的值.
【答案】(I)证明见解析;(II);(III)2018.
【解析】试题分析:
(1)左右两侧做差,结合代数式的性质可证得,即对,恒有:成立;
(2)由已知条件可设,给定特殊值,令,从而可得:,则,,从而有恒成立,据此可知,则.
(3)结合(1)(2)的结论整理计算可得:,据此分组求和有:.
试题解析:
(1)(仅当时,取“=”)
所以恒有:成立;
(2)由已知条件可设,则中,令,
从而可得:,所以,即,
又因为恒成立,即恒成立,
当时,,不合题意舍去,
当时,即,所以,所以.
(3),
所以,
即.
【题型】解答题
【结束】
22
【题目】已知函数 为定义在上的奇函数.
(1)求函数的值域;
(2)当时,不等式恒成立,求实数的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com