精英家教网 > 高中数学 > 题目详情
如图,四棱锥中,,底面为直角梯形,,点在棱上,且
(1)求异面直线所成的角;
(2)求证:平面
(3)求二面角的余弦值.
(1)异面直线所成的角等于.(2)证明见解析
(3)二面角的余弦值为
(1)以为原点,所在直线分别为轴,
轴,轴,建立空间直角坐标系
,则

,即
,则


所以异面直线所成的角等于
(2)连结,连结


,故平面
(2)连结,连结


,故平面
(3)设平面的法向量

所以
于是
又因为平面的法向量
所以,即二面角的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在如图所示的多面体中,四边形都为矩形。

(Ⅰ)若,证明:直线平面
(Ⅱ)设分别是线段的中点,在线段上是否存在一点,使直线平面?请证明你的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,底面是边长为2的正三角形,侧棱长为3,且侧棱,点的中点.
(1)  求证:;(2)求证:∥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体中,的中点,则异面直线间的距离       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面平面是正方形,是矩形,且的中点.
(1)求与平面所成角的正弦值;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直四棱柱中,,底面是直角梯形,是直角,,求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知长方体ABCD—A1B1C1D1中,AB=BC=2,AA1=4,
E是棱CC1上的点,且BE⊥B1C.
(1)求CE的长;
(2)求证:A1C⊥平面BED;
(3)求A1B与平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若平面α,β的法向量分别为
u
=(2,-3,4),
v
=(-3,1,-4)
,则(  )
A.αβB.α⊥β
C.α,β相交但不垂直D.以上均不正确

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线的方向向量为,直线的方向向量为,那么的角是 (     )                       
A.30°B.45°C.150°D.160°

查看答案和解析>>

同步练习册答案