精英家教网 > 高中数学 > 题目详情
如图,已知A1B1C1-ABC是正三棱柱,D是AC中点.(1)证明AB1∥平面DBC1;(2)假设AB1⊥BC1,求以BC1为棱,DBC1与CBC1为面的二面角α的度数.
精英家教网
分析:(1)欲证AB1∥平面DBC1,根据直线与平面平行的判定定理可知只需证AB1与平面DBC1内一直线平行,根据等腰三角形可知DE∥AB1,又AB1∉平面DBC1,DE?平面DBC1,满足定理所需条件;
(2)作DF⊥BC,垂足为F,则DF⊥面B1BCC1,连接EF,则EF是ED在平面B1BCC1上的射影,根据二面角的平面角的定义可知∠DEF是二面角α的平面角,然后在三角形DEF中求出∠DEF即可.
解答:精英家教网(1)证明:
∵A1B1C1-ABC是正三棱柱,∴四边形B1BCC1是矩形.
连接B1C交BC1于E,则B1E=EC.连接DE.
在△AB1C中,∵AD=DC,∴DE∥AB1
又AB1?平面DBC1,DE?平面DBC1,∴AB1∥平面DBC1
(2)解:作DF⊥BC,垂足为F,
则DF⊥面B1BCC1,连接EF,
则EF是ED在平面B1BCC1上的射影.
∵AB1⊥BC1
由(1)知AB1∥DE,∴DE⊥BC1,则BC1⊥EF,∴∠DEF是二面角α的平面角.
设AC=1,则DC=
1
2
.∵△ABC是正三角形,∴在Rt△DCF中,
DF=DC•sinC=
3
4
,CF=DC•cosC=
1
4
.取BC中点G.∵EB=EC,∴EG⊥BC.
在Rt△BEF中,
EF2=BF•GF,又BF=BC-FC=
3
4
,GF=
1
4

∴EF2=
3
4
1
4
,即EF=
3
4
.∴tan∠DEF=
DF
EF
=
3
4
3
4
=1
.∴∠DEF=45°.
故二面角α为45°.
点评:本小题考查空间线面关系、正棱柱的性质、空间想象能力和逻辑推理能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知正三棱柱ABC-A1B1C1的底面边长是2,D是侧棱CC1的中点,平面ABD和平面A1B1C的交线为MN.
(Ⅰ)试证明AB∥MN;
(Ⅱ)若直线AD与侧面BB1C1C所成的角为45°,试求二面角A-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宣武区一模)如图,已知长方体AC1中,AB=BC=1,BB1=2,连接B1C,过B点作B1C的垂线交CC1于E,交B1C于F
(1)求证:AC1⊥平面EBD;
(2)求点A到平面A1B1C的距离;
(3)求直线DE与平面A1B1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知长方体ABCD-A1B1C1D1,AB=BC=1,BB1=2,连接B1C,过B点作B1C.
的垂线交CC1于E,交B1C于F.
(I)求证:A1C⊥平面EBD;
(Ⅱ)求直线DE与平面A1B1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知长方体ABCD-A1B1C1D1,AB=BC=1,BB1=2,连接B1C,过B点作B1C.
的垂线交CC1于E,交B1C于F.
(I)求证:A1C⊥平面EBD;
(Ⅱ)求直线DE与平面A1B1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知长方体AC1中,AB=BC=1,BB1=2,连接B1C,过B点作B1C的垂线交CC1于E,交B1C于F
(1)求证:AC1⊥平面EBD;
(2)求点A到平面A1B1C的距离;
(3)求直线DE与平面A1B1C所成角的正弦值.

查看答案和解析>>

同步练习册答案