精英家教网 > 高中数学 > 题目详情
如图,已知正方体ABCD—A1B1C1D1中,E、F、G、H、M、N分别是正方体六个表面的中心,证明:平面EFG∥平面HMN.

证明:如图,建立空间直角坐标系D—xyz,设正方体的棱长为2,易得E(1,1,0),F(1,0,1),G(2,1,1),H(1,1,2),M(1,2,1),N(0,1,1).?

=(0,-1,1),=(1,0,1),?

=(0,1,-1),=(-1,0,-1).?

设m=(x1,y1,z1),n=(x2,y2,z2)分别是平面EFG、平面HMN的法向量,?

令x1=1,得m=(1,-1,-1).?

令x2=1,得n=(1,-1,-1).?

∴m=n,故m∥n,,即平面EFG∥平面HMN.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、如图,已知正方体ABCD-A1B1C1D1的棱长为3,点E,F在线段AB上,点M在线段B1C1上,点N在线段C1D1上,且EF=1,D1N=x,AE=y,M是B1C1的中点,则四面体MNEF的体积(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点.
求:
(1)D1E与平面BC1D所成角的正弦值;
(2)二面角D-BC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,E、F分别是D1C、AB的中点.
(I)求证:EF∥平面ADD1A1
(Ⅱ)求二面角D-EF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点.
(1)求证:B1D⊥平面PQR;
(2)设二面角B1-PR-Q的大小为θ,求|cosθ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝山区一模)如图,已知正方体ABCD-A1B1C1D1 的棱长为2,E,F分别是BB1,CD的中点.
(1)求三棱锥E-AA1F的体积;
(2)求异面直线EF与AB所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

同步练习册答案