精英家教网 > 高中数学 > 题目详情
16.设函数y=f(x)在区间(a,b)上的导函数f′(x),f′(x)在区间(a,b)上的导函数f″(x),若在区间(a,b)上f″(x)<0,则称函数f(x)在区间(a,b)上为“凸函数”,已知f(x)=$\frac{1}{20}$x5-$\frac{1}{12}$mx4-2x2在(1,3)上为“凸函数”,则实数m的取值范围是(  )
A.(-∞,$\frac{23}{9}$)B.[-3,$\frac{23}{9}$]C.[$\frac{23}{9}$,+∞)D.[-3,+∞)

分析 函数在区间(1,3)上为“凸函数”,所以f″(x)<0,即对函数y=f(x)二次求导,分离参数,求参数的最值即可.

解答 解:由已知条件得f′(x)=$\frac{1}{4}$x4-$\frac{1}{3}$mx3-4x,则f″(x)=x3-mx2-3,
若f(x)为区间(-1,3)上的“凸函数”,则有f″(x)=x3-mx2-4<0在区间(1,3)上恒成立,
则m>x-$\frac{4}{{x}^{2}}$,
∵x-$\frac{4}{{x}^{2}}$在(1,3)上递增,
∴x-$\frac{4}{{x}^{2}}$<3-$\frac{4}{9}$=$\frac{23}{9}$,
∴m≥$\frac{23}{9}$
故选:C.

点评 本题考查函数的导数与不等式恒成立问题的解法,关键是要理解题目所给信息(新定义),考查知识迁移与转化能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.阅读如图程序,当输入A=2,B=3时,输出的结果是3,2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合 A={x||x-$\frac{3}{2}$|=$\frac{1}{2}$},B={t|t2+2(a+1)t+(a2-5)=0}.若A∩B=B,则实数a的取值范围(  )
A.(-∞,-2]B.(-∞,-3]C.(-∞,-4]D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=lg(ax-bx),常数a>1>b>0,则不等式f(x)>0的解集是(1,+∞)的充要条件是(  )
A.a>b+1B.a=b+1C.a<b+1D.a≥b+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C:$\left\{\begin{array}{l}{x=3\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),直线k:ρ(cosθ-$\sqrt{3}$sinθ)=12
(1)将直线l的极坐标方程和曲线C的参数方程分别化为直角坐标方程和普通方程;
(2)设点P在曲线C上,求点P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解关于x的不等式15x2+2ax-a2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若A、B是△ABC的内角,且$cosA=\frac{3}{5}$,$sinB=\frac{5}{13}$,则sinC=$\frac{63}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,BC=a,AC=b,a,b是方程x2-2$\sqrt{3}$x+2=0的两个根,且2cos(A+B)=1.则角C的大小(  )
A.60°B.90°C.120°D.180°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一个等差数列前4项的和是24,前5项的和与前2项的和的差是27,求这个等差数列的通项公式.

查看答案和解析>>

同步练习册答案