精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的一个焦点为,左右顶点分别为.经过点的直线与椭圆交于两点.

1)求椭圆方程及离心率.

2)当直线的倾斜角为时,求线段的长;

3)记的面积分别为,求最大值.

【答案】(1) ; (2);(3).

【解析】

1)由焦点坐标可求出c的值,根据a,b,c的平方关系可求得a的值;(2)写出直线方程,与椭圆方程联立得到关于x的一元二次方程,利用韦达定理及弦长公式即可求得;(3)当直线l的斜率不存在时可求得;当直线l斜率存在时,设出直线方程并与椭圆方程联立得到关于x的一元二次方程,根据韦达定理用k表示出转化为关于的式子,再转化为关于k的表达式,利用基本不等式即可求得最大值.

1)因为为椭圆的焦点,所以,又

所以,椭圆方程为,离心率为

2)直线l的斜率为且过点,则直线l的方程为

与椭圆方程联立,得到

所以

3)当直线l的斜率不存在时,直线方程为

此时,的面积相等,

当直线l的斜率存在(显然)时,设直线方程为

直线方程与椭圆方程联立得,消y

显然,方程有根,且

此时,

,当且仅当时等号成立.

综上所述,的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线l的参数方程为t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ4acosθ,直线l与曲线C交于不同的两点MN

1)求实数a的取值范围;

2)已知a0,设点P(﹣1,﹣2),若|PM||MN||PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年国际乒联总决赛在韩国仁川举行,比赛时间为12131216日,在男子单打项目,中国队准备选派4人参加.已知国家一线队共6名队员,二线队共4名队员.

1)求恰好有3名国家一线队队员参加比赛的概率;

2)设随机变量X表示参加比赛的国家二线队队员的人数,求X的分布列;

3)男子单打决赛是林高远(中国)对阵张本智和(日本),比赛采用七局四胜制,已知在每局比赛中,林高远获胜的概率为,张本智和获胜的概率为,前两局比赛双方各胜一局,且各局比赛的结果相互独立,求林高远获得男子单打冠军的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断函数上的单调性,并证明;

2)若恒成立,求的最小值;

3)记,求集合中正整数的个数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是半圆的直径,是半圆上除点外的一个动点,垂直于所在的平面,垂足为,且.

1)证明:平面平面

2)当为半圆弧的中点时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,圆,过R点的直线交圆于MN两点过R点作直线SMQ.

1)求Q点的轨迹方程;

2)若ABQ的轨迹与x轴的左右交点,为该轨迹上任一动点,设直线APBP分别交直线l于点MN,判断以MN为直径的圆是否过定点。如圆过定点,则求出该定点;如不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极小值

(1)求实数的值;

(2)设,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥底面ABCD,△DAB≌△DCBE为线段BD上的点,且EAEBEDAB,延长CEAD于点F

1)若GPD的中点,求证平面PAD⊥平面CGF

2)若ADAP6,求平面BCP与平面DCP所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案