精英家教网 > 高中数学 > 题目详情
11.已知$\frac{α}{2}+\frac{β}{2}=\frac{π}{4}$,则tan$\frac{α}{2}$+tan$\frac{β}{2}$+tan$\frac{α}{2}$tan$\frac{β}{2}$的值为1.

分析 由条件利用两角和的正切公式,求得所给的式子的值.

解答 解:∵已知$\frac{α}{2}+\frac{β}{2}=\frac{π}{4}$,则tan$\frac{α}{2}$+tan$\frac{β}{2}$+tan$\frac{α}{2}$tan$\frac{β}{2}$=tan($\frac{α+β}{2}$)(1-tan$\frac{α}{2}$tan$\frac{β}{2}$ )+tan$\frac{α}{2}$tan$\frac{β}{2}$
=tan$\frac{π}{4}$(1-tan$\frac{α}{2}$tan$\frac{β}{2}$)+tan$\frac{α}{2}$tan$\frac{β}{2}$=1,
故答案为:1.

点评 本题主要考查两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若集合A={x|x=3m-2,m∈Z},B={x|x=3m+1,m∈Z},C={x|x=6m+1,m∈Z},则集合A、B、C的关系是C?B=A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数y=f(x),x∈l,若存在x0∈l,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0∈l,使得f(f(x0))=x0,则称x0为函数y=f(x)的稳定点,则下列结论中正确的是①②⑤(填上所有正确结论的序号).
①-$\frac{1}{2}$、1是函数f(x)=2x2-1有两个不动点;
②若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;
③若x0为函数y=f(x)的稳定点,则x0必为函数y=f(x)的不动点;
④函数f(x)=2x2-1共有三个稳定点;
⑤f(x)=$\sqrt{{e}^{x}+x}$的不动点与稳定点相同.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=x(x2-c)在(1,3)不单调,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=$\frac{2x+1}{x+a}$在(-2,+∞)上单调递增,则实数a的取值范围[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线方程为y=f(x)=x2,求过点B(3,5)且与曲线相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若$\frac{cosα+sinα}{cosα-sinα}$=2,则tan(α+$\frac{π}{4}$)=(  )
A.2B.$\frac{1}{3}$C.$\frac{4}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.同一平面上的10条直线最多可将平面分成多少份(  )
A.55B.56C.63D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=2cosx+1的对称轴是(  )
A.x=kπ,(k∈Z)B.x=kπ+$\frac{π}{2}$,(k∈Z)C.x=2kπ+$\frac{π}{2}$,(k∈Z)D.x=2kπ-$\frac{π}{2}$,(k∈Z)

查看答案和解析>>

同步练习册答案