精英家教网 > 高中数学 > 题目详情

.
(1)若时,单调递增,求的取值范围;
(2)讨论方程的实数根的个数.

(1);(2)见解析.

解析试题分析:(1)求出函数导数,当时,单调递增,说明当时,,即恒成立,又函数 在上递减,所以;(2)将方程化为,令,利用导数求出的单调区间,讨论的取值当时,,当时,,所以当时,方程无解,当时,方程有一个根,当时,方程有两个根.
试题解析:(1)∵     ∴ 
∵当时,单调递增  ∴当时,
,,函数 在上递减

(2) ∴

时   
   ∴
递增
时     
     ∴
递减

时   
时 
∴①当时,方程无解
②当时,方程有一个根
③当时,方程有两个根
考点:利用导数求函数最值、利用导数研究函数取值、函数和方程思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

【题文】已知函数.
(1)若处取得极大值,求实数的值;
(2)若,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数为实常数).
(1)当时,求函数处的切线方程;
(2)设.
①求函数的单调区间;
②若函数的定义域为,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知点,直线与函数的图象交于点,与轴交于点,记的面积为.

(Ⅰ)求函数的解析式;
(Ⅱ)求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数.
(1)若,求函数的极值与单调区间;
(2)若函数的图象在处的切线与直线平行,求的值;
(3)若函数的图象与直线有三个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处的切线方程为
(1)求的值;
(2)对函数定义域内的任一个实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若函数上是增函数,求正实数的取值范围;
(Ⅱ)若,设,求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)讨论函数的单调区间;
(Ⅱ)当时,若函数在区间上的最大值为28,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,试讨论的单调性;
(2)若对,总使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案