精英家教网 > 高中数学 > 题目详情
15.已知cos($\frac{3π}{2}$-φ)=$\frac{3}{5}$,且|φ|<$\frac{π}{2}$,则tanφ=$-\frac{3}{4}$.

分析 直接利用有点贵睡一觉同角三角函数的基本关系式化简求解即可.

解答 解:cos($\frac{3π}{2}$-φ)=$\frac{3}{5}$,且|φ|<$\frac{π}{2}$,
可得sinφ=-$\frac{3}{5}$.cosφ=$\frac{4}{5}$,
tanφ=$\frac{sinφ}{cosφ}$=$\frac{-\frac{3}{5}}{\frac{4}{5}}$=$-\frac{3}{4}$.
故答案为:$-\frac{3}{4}$.

点评 本题考查诱导公式的应用,同角三角函数的基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知$\overrightarrow{OM}$=(1-$\frac{1}{3}$)$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$,则$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{AB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2cos2x+$\sqrt{3}$sin2x-1.
(1)求f($\frac{π}{6}$)的值;
(2)求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=3•2x+$\frac{3}{{2}^{x}}$,x∈R.
(1)判断函数f(x)的奇偶性,并说明理由;
(2)利用函数单调性定义证明:f(x)在(0,+∞)上是增函数;
(3)若f(x)≥k+log2$\frac{8}{m}$•log2(2m)(m>0,k∈R)对任意的x∈R,任意的m∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合M={x|x2+px+q=0}={2},求实数p,q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x2-x+1,则g(x)=f(2x)的递减区间是(  )
A.(-∞,$\frac{1}{2}$)B.($\frac{1}{2}$,+∞)C.(-∞,-1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求证:一次函数f(x)=kx+b(k≠0)是奇函数的充要条件是b=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数y=f(x)的值域是$[\frac{1}{4},4]$,则函数y=f(x)-2$\sqrt{f(x)}$的最小值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.根据如下的样本数据:
x1234567
y7.35.14.83.12.00.3-1.7
得到的回归方程为y=bx+a,则(  )
A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0

查看答案和解析>>

同步练习册答案