(本小题满分14分)
如图,沿等腰直角三角形的中位线,将平面折起,平面⊥平面,得到四棱锥,,设、的中点分别为、,
(1)求证:平面⊥平面
(2)求证:
(3)求平面与平面所成锐二面角的余弦值。
科目:高中数学 来源: 题型:解答题
(本题12分)如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,
⑵ 证:平面A1CB⊥平面BDE;
⑵求A1B与平面BDE所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,在四棱锥中,底面是正方形,侧棱底面,,是的中点,作交于点.
(1)证明 //平面;
(2)求二面角的大小;
(3)证明⊥平面.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图所示,在四棱锥P—ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.
(1)求四棱锥的体积;
(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com