精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
如图,沿等腰直角三角形的中位线,将平面折起,平面⊥平面,得到四棱锥,设的中点分别为


(1)求证:平面⊥平面
(2)求证: 
(3)求平面与平面所成锐二面角的余弦值。

(1)见解析(2)见解析(3)

解析试题分析:(1)证明:平面平面,交线为, ,   
平面.
, 两两互相垂直,
为原点建立空间直角坐标系,                                               ……2分
因为为等腰直角三角形,且,则
,.
,,,
,,
平面,又平面
平面⊥平面.                                                  ……5分
(2)分别为的中点,,.
设平面的法向量,由于
  即 ,,令,则, .
, 即//平面.                                  ……9分
(3)由(2)可知平面的法向量

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题12分)如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,
⑵    证:平面A1CB⊥平面BDE;
⑵求A1B与平面BDE所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分为12分)
如图所示:已知⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A作于E,求证:
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,在四棱锥中,底面是正方形,侧棱底面的中点,作于点
(1)证明 //平面
(2)求二面角的大小;
(3)证明⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
在三棱锥中,都是边长为的等边三角形,分别是的中点.
(1)求证:平面
(2)求证:平面⊥平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)如图,四边形是矩形,平面上一点,平面,点分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四边形满足的中点,将沿着翻折成,使面的中点.

(Ⅰ)求四棱的体积;(Ⅱ)证明:∥面
(Ⅲ)求面与面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图所示,在四棱锥P—ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.
(1)求四棱锥的体积;
(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面⊥平面为正方形, ,且分别是线段的中点.

(Ⅰ)求证://平面;  
(Ⅱ)求异面直线所成角的余弦值.

查看答案和解析>>

同步练习册答案