【题目】已知函数且满足条件:①;②.
(1)求的表达式;
(2)当时,证明:;
(3)若函数,讨论在上的零点个数.
【答案】(1)(2)见解析(3)见解析.
【解析】
(1)因为,图像关于成中心对称,是奇函数,图像关于(0,0)成中心对称,故,求解
(2)由三角函数线的定义直接证明。
(3)先设,转化为二次函数的零点问题,对值进行分类讨论:当, ,。
:(1)因为是奇函数,图像关于(0,0)成中心对称,
又因为,图像关于成中心对称,
则,即,且,故,
(另:,则)
又,即,故,综上。
(2)当,,设,即证,
如图:在单位圆中,由三角函数线知,
则在中,,
即,所以。(另:也可以利用证明!)
(3)设,,注意到,,
当时,得,即,则有2018个零点;
当时,令得,
则有 个零点;
当时,令得,
则有个零点;
当时,令得,
则有个零点;
科目:高中数学 来源: 题型:
【题目】椭圆的左右焦点分别为F1,F2,离心率为,过点F1且垂直于x轴的直线被椭圆截得的弦长为,直线l:y=kx+m与椭圆交于不同的A,B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆C上存在点Q满足: (O为坐标原点).求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1, (t为参数).
(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;
(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的 倍,得到曲线 .设P(﹣1,1),曲线C2与 交于A,B两点,求|PA|+|PB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:
(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
现对某城市30天的空气质量进行监测,获得30个API数据(每个数据均不同),统计绘得频率分布直方图如图.
(1)请由频率分布直方图来估计这30天API 的平均值;
(2)若从获得的“空气质量优”和“空气质量中重度污染” 的数据中随机选取个数据进行复查,求“空气质量优”和“空气质量中重度污染”数据恰均被选中的概率;
(3)假如企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API (记为)的关系式为,
若将频率视为概率,在本年内随机抽取一天,试估计这天的经济损失S不超过600元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点 ,点P是圆 上的任意一点,设Q为该圆的圆心,并且线段PA的垂直平分线与直线PQ交于点E.
(1)求点E的轨迹方程;
(2)已知M,N两点的坐标分别为(﹣2,0),(2,0),点T是直线x=4上的一个动点,且直线TM,TN分别交(1)中点E的轨迹于C,D两点(M,N,C,D四点互不相同),证明:直线CD恒过一定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体,关于其结构特征,下列说法不正确的是
A. 该几何体是由两个同底的四棱锥组成的几何体
B. 该几何体有12条棱、6个顶点
C. 该几何体有8个面,并且各面均为三角形
D. 该几何体有9个面,其中一个面是四边形,其余均为三角形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com