精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x,x≥4
f(x+2),x<4
,则f(1+log23)的值为(  )
A、6B、12C、24D、36
考点:分段函数的应用
专题:函数的性质及应用
分析:根据分段函数的表达式,代入即可得到结论.
解答:解:∵2<1+log23<3,
∴4<2+1+log23<5,即4<log224<5,
∵当x<4时,f(x)=f(x+2),
∴f(1+log23)=f(2+1+log23)=f(log224)=2log224=24
故选:C
点评:本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数中,在区间(1,+∞)上是增函数的是(  )
A、y=-x+1
B、y=31-x
C、y=-(x-1)2
D、y=
1
1-x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+2,x≤0
lnx,x>0.
,若函数y=|f(x)|-k的零点恰有四个,则实数k的取值范围为(  )
A、(1,2]
B、(1,2)
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
4
x+1,x≤1
lnx,x>1
,则方程f(x)=ax恰有两个不同实数根时,实数a的取值范围是(  )(注:e为自然对数的底数)
A、(0,
1
e
B、[
1
4
1
e
]
C、(0,
1
4
D、[
1
4
,e]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数g(x)=x2-2(x∈R),f(x)=
g(x)+x+4,x<g(x)
g(x)-x,x≥g(x)
,则f(x)的值域是(  )
A、[-
9
4
,0]∪(1,+∞)
B、[0,+∞)
C、[
9
4
,+∞)
D、[-
9
4
,0]∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的运算“⊕”:对实数x和y,x⊕y=
x(x≥y)
y(x<y)
,设函数f(x)=(x2+2x-2)⊕(-x2+2),x∈R.若函数f(x)+a的图象与直线y=1恰有两个公共点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x,x≤0
log2x,x>0
,【若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+
1
x
x∈[-2,-1]
-2,x∈[-1,
1
2
)
x-
1
x
x∈[
1
2
,2]
,函数g(x)=ax-2,x∈[-2,2],对任意x1∈[-2,2],总存在x∈[-2,2],使得g(x)=f(x)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x+y-3=0的倾斜角的大小是(  )
A、
π
4
B、
3
4
π
C、1
D、-1

查看答案和解析>>

同步练习册答案