精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=sin(2x+φ),(0<φ<$\frac{π}{2}$),f(x)≤f($\frac{π}{6}$)恒成立,则φ=$\frac{π}{6}$.

分析 由题意得$\frac{π}{3}$+φ=$\frac{π}{2}$+2kπ,存在k∈Z,使φ=$\frac{π}{6}$+2kπ,由0<φ<$\frac{π}{2}$,求得φ的值.

解答 解:由题意可得f($\frac{π}{6}$)为f(x)的最大值为1,
即$\frac{π}{3}$+φ=$\frac{π}{2}$+2kπ,k∈Z.
∴φ=$\frac{π}{6}$+2kπ,k∈Z.
∵0<φ<$\frac{π}{2}$,
∴k=0,φ=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.

点评 本题主要考查正弦函数的图象和性质,考查正弦函数的最值,以及运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.己知函数f(x)=ax2+bx+1(a>0)
(1)?x∈R,函数f($\frac{2{x}^{2}+3}{{x}^{2}+1}$)有最大值1,求函数f($\frac{2{x}^{2}+3}{{x}^{2}+1}$)的单调区间;
(2)已知?x0∈R,使|f(x0)|≤$\frac{1}{a}$与|f(x0+$\frac{2}{a}$)|≤$\frac{1}{a}$同时成立,求b2-4a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,E,F分别是BC,PC的中点,H是PD上的动点,EH与平面PAD所成的角为θ.
(1)求证:平面AEF⊥平面PAD;
(2)求当θ取最大值为$\frac{π}{4}$时,二面角E-AF-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在圆内接梯形ABCD中,AB∥CD.过点A作圆的切线与CB的延长线交于点E,若AB=AD=3,BE=2,
(1)求证:梯形ABCD为等腰梯形;
(2)求弦BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设三个互不相等的数a,b,c成等比数列(a<b<c).其积为27,又a,b,c-4成等差数列,求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知二次函数f(x)满足关系式f(-2+x)=f(-2-x),f(x)的图象被x轴截得的线段长为4,且方程f(x)=x有唯一的解,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=x2-2x+alnx.
(Ⅰ)若函数f(x)有两个极值点x1,x2,且x1<x2,求实数a的取值范围;
(Ⅱ)证明:f(x2)>-$\frac{3+2ln2}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系中,曲线C1:$\left\{{\begin{array}{l}{x=3cosθ}\\{y=asinθ}\end{array}}$(θ为参数,a>0)过点P($\frac{3}{2},\sqrt{3}$),以坐标原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线l的极坐标方程为cosθ+2sinθ=$\frac{10}{ρ}$.
(Ⅰ)求曲线C1与直线l的直角坐标方程;
(Ⅱ)在C1上求一点M,使点M到直线l的距离最小,求出最小距离及点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.点P从(1,0)出发,沿单位圆逆时针方向运动$\frac{4π}{3}$弧长到达Q 点,则Q点的坐标为(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

同步练习册答案