精英家教网 > 高中数学 > 题目详情
1.如图,ABCD-A1B1C1D1是棱长为1正方体.
(1)求证:B1D1∥面C1BD;
(2)求证:A1C⊥平面C1BD.

分析 (1)根据正方体的几何特征可得B1D1∥BD,结合线面平行的判定定理,即可得到B1D1∥平面C1BD;
(2)连接AC,交BD于O,则BD⊥AC,结合A1A⊥BD,由线面垂直的判定定理得BD⊥平面A1AC,进而BD⊥A1C,连接C1O,可证得A1C⊥C1O,再利用线面垂直的判定定理即可得到A1C⊥平面C1BD;

解答 解:(1)∵B1D1∥BD,
又BD?平面C1BD,B1D1?平面C1BD,
∴B1D1∥平面C1BD.…(2分)
(2)连接AC,交BD于O,则BD⊥AC.
又A1A⊥BD,
∴BD⊥平面A1AC.
∵A1C?平面A1AC,BD⊥A1C.
连接C1O,在矩形A1C1CA中,设A1C交C1O于M.
由$\frac{{A}_{1}A}{AC}$=$\frac{OC}{C{C}_{1}}$,知∠ACA1=∠CC1O.
∴∠C1OC+A1CO=∠C1OC+∠CC1O=$\frac{π}{2}$,
∴∠CMO=$\frac{π}{2}$,
∴A1C⊥C1O.
又CO∩BD=0,CO?平面C1BD,BD?平面C1BD,
∴A1C⊥平面C1BD.…(7分)

点评 本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,其中(1)的关键是根据正方体的几何特征得B1D1∥BD,(2)的关键是得到BD⊥A1C,A1C⊥C1O.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知点A(1,0,0),B(0,1,0),C(0,0,1),点D满足条件:DB⊥AC,DC⊥AB,AD=BC,则点D的坐标为(  )
A.(1,1,1)B.(-1,-1,-1)或($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$)
C.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$)D.(1,1,1)或(-$\frac{1}{3}$,-$\frac{1}{3}$,-$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.判断下列函数是否具有奇偶性:
(1)f(x)=x+x3+x5
(2)f(x)=x2,x∈(-1,3);
(3)f(x)=-x2
(4)f(x)=5x+2;
(5)f(x)=(x+1)(x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,a=4,b=2$\sqrt{2}$,∠A=45°,则∠B=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=1+$\frac{{x}^{\frac{1}{3}}+x}{{x}^{\frac{2}{3}}+{x}^{2}}$(x∈[-b,-a]∪[a,b],其中a<b)的最大值为M,最小值为m,则M+m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}中,an=$\frac{1}{n+1}$-$\frac{1}{n}$,则a1+a2+a3+…a100=$-\frac{100}{101}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若(2x-1)8的展开式二项系数最大项是mxn,则m+n=74.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数y=$\frac{ax+3}{x-2}$在区间(2,+∞)上单调递增,则a的取值范围是a<-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列结论:
①若命题p:存在x∈R,tan x=2;命题q:任意x∈R,x2-x+$\frac{1}{2}$>0.则命题“p且(非q)”是假命题;
②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是$\frac{a}{b}$=-3;
③设F1,F2是双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为$\sqrt{3}$.
④设正实数x,y,z满足x2-3xy+4y2-z=0,则当$\frac{xy}{z}$取得最大值时,$\frac{2}{x}$+$\frac{1}{y}$-$\frac{2}{z}$的最大值为1.
其中正确结论的序号为①③④.(把你认为正确结论的序号都填上)

查看答案和解析>>

同步练习册答案