精英家教网 > 高中数学 > 题目详情
1.设x>0,若x+$\frac{a}{x}$>1恒成立,则a的取值范围是(  )
A.($\frac{1}{4}$,+∞)B.($\frac{1}{2}$,+∞)C.(1,+∞)D.(2,+∞)

分析 问题转化为${(x-\frac{1}{2})}^{2}$+a-$\frac{1}{4}$>0在x>0时恒成立,结合二次函数的性质,从而求出a的范围.

解答 解:设x>0,若x+$\frac{a}{x}$>1恒成立,
则:x2-x+a>0,即${(x-\frac{1}{2})}^{2}$+a-$\frac{1}{4}$>0,
∴a-$\frac{1}{4}$>0,解得:a>$\frac{1}{4}$,
故选:A.

点评 本题考查了二次函数的性质,考查函数恒成立问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|x2-16<0},B={x2-8x+12<0},I=A∩B.
(1)求集合I.
(2)若函数f(x)=x2-2ax+1大于0对x∈I恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x∈Z|x2-2x-3>0 },则 (∁RA)∩N*=(  )
A.{-1,0,1,2,3}B.{0,1,2,3}C.{1,2,3}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果两条直线a∥b,且a∥面α,则b与α的位置关系是b∥α或b?α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.平面直角坐标系中,将曲线$\left\{\begin{array}{l}{x=2cosa+2}\\{y=sina}\end{array}\right.$(a为参数)上的每一点横坐标不变,纵坐标变为原来的2倍得到曲线C1,以坐标原点为极点,x轴的非负半轴为极轴,建立的极坐标系中,曲线C2的方程为ρ=4sinθ.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)求C1和C2公共弦的垂直平分线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若不等式x2-a>0在区间[1,2]上恒成立,则实数a的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若点(-4,3)是角α终边上一点,求$\frac{cos(α-3π)tan(α-4π)}{sin(3π-α)cos(α+5π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若a,b,c是非零实数,x=$\frac{a}{|a|}$+$\frac{b}{|b|}$+$\frac{c}{|c|}$,则由数x组成的集合可以表示为{3,-3,1,-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设动点(x,y)满足不等式组$\left\{\begin{array}{l}(x-y+1)(x+y-4)≥0\\ x≥3\end{array}\right.$,则x2+y2的最小值是(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.$\frac{17}{2}$D.10

查看答案和解析>>

同步练习册答案