【题目】动点在椭圆上,过点作轴的垂线,垂足为,点满足,已知点的轨迹是过点的圆.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点(,在轴的同侧),,为椭圆的左、右焦点,若,求四边形面积的最大值.
科目:高中数学 来源: 题型:
【题目】在直角坐标系,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,直线的极坐标方程为
(1)求曲线的普通方程和直线的直角坐标方程;
(2)设直线与轴的交点为,经过点的动直线与曲线交于,两点,证明:为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆的短轴长为2,离心率为.
(1)求椭圆E的标准方程;
(2)若直线l与椭圆E相切于点P(点P在第一象限内),与圆相交于点A,B,且,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第30届夏季奥运会将于2012年7月27日在伦敦举行,当地某学校招募了8名男志愿者和12名女志愿者.将这20名志愿者的身高编成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.
(I)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,试写出X的分布列,并求X的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点在椭圆上,过点作轴的垂线,垂足为,点满足,已知点的轨迹是过点的圆.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点(,在轴的同侧),,为椭圆的左、右焦点,若,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,过抛物线的焦点且与轴垂直的直线与抛物线在第一象限交于点,的面积为,其中为坐标原点.
(1)求抛物线的标准方程;
(2)若,,为抛物线上的两个不同的点,直线,的斜率分别为,,且,求点到直线的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为(θ为参数),直线l的参数方程为(m为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴,建立坐标系.
(1)求曲线C的极坐标方程;
(2)直线l与曲线C相交于M,N两点,若,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com