精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知椭圆上任意一点到两焦点距离之和为4,直线为该椭圆的一条准线.
1)求椭圆C的方程;
2)设直线与椭圆C交于不同的两点(其中为坐标原点),求直线的斜率的取值范围.
1) 2)
1)设椭圆的半焦距为,依题意得

所以椭圆C的方程为
2)设
联立



因此
所以斜率的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。求双曲线C2的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动点()在曲线上变化,则的最大值为(   )
A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)已知F1、F2是椭圆c1(a>b>0)的左、右焦点,A为右顶点,P为椭圆c1上任意一点,且最大值的取值范围是[c2,3c2],c2=a2-b2.(1)求椭圆c1离心率e的取值范围;(2)设双曲线c2以椭圆c1焦点为顶点,顶点为焦点,B是双曲线c2在第一象限上任意一点,当椭圆c1离心率e取得最小值时,问是否存在正常数λ使∠BAF1=λ∠BF1A恒成立?若存在,求出λ值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.
已知双曲线设过点的直线l的方向向量
(1)      当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;
(2)      证明:当>时,在双曲线C的右支上不存在点Q,使之到直线l的距离为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的离心率为,且曲线过点
(1)求椭圆C的方程;(2)已知直线与椭圆C交于不同的两点A,B,且线段AB的中点不在圆内,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
a2
+
y2
3
=1
(a
3
)的离心率e=
1
2
.直线x=t(t>0)与曲线 E交于不同的两点M,N,以线段MN 为直径作圆 C,圆心为 C.
(1)求椭圆E的方程;
(2)若圆C与y轴相交于不同的两点A,B,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定点A(2,0),它与抛物线y2=x上的动点P连线的中点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线y2=2px(p>0)的焦点为F,直线L:2px+3y=p2
⑴当p为何值时,焦点F到直线L的距离最大;
⑵在第⑴题下,又若抛物线与直线L相交于A、B两点。求△ABF的面积。

查看答案和解析>>

同步练习册答案