精英家教网 > 高中数学 > 题目详情
设直线l的方程为:x+ysinθ-2013=0(θ∈R),则直线l的倾斜角α的范围是(  )
A.[0,π)B.[
π
4
π
2
)
C.[
π
4
4
]
D.[
π
4
π
2
)∪(
π
2
4
]
当sinθ=0时,直线l的方程为:x-2013=0
此时倾斜角α=
π
2

当sinθ≠0时,直线l的方程为:y=-
1
sinθ
x+2013
直线l的斜率k=-
1
sinθ
∈(-∞,-1]∪[1,+∞)
直线l的倾斜角α∈[
π
4
π
2
)∪(
π
2
4
]

综上所述:直线l的倾斜角α∈[
π
4
4
]

故选C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上的截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l的方程为:x+ysinθ-2013=0(θ∈R),则直线l的倾斜角α的范围是(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省怀化市高三(上)期末数学试卷(理科)(解析版) 题型:选择题

设直线l的方程为:x+ysinθ-2013=0(θ∈R),则直线l的倾斜角α的范围是( )
A.[0,π)
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三第五次质量检测文科数学试卷(解析版) 题型:解答题

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

同步练习册答案