精英家教网 > 高中数学 > 题目详情
5.设圆x2+y2=a2与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$1(a>0,b>0)的渐近线在第一象限的交点为M,A1,A2分别为双曲线C的左、右顶点,直线A1M交双曲线C的右支于点P,若直线A2M和A2P的倾斜角互补,则C的渐近线方程为y=x.

分析 A1(-a,0),A2(a,0).联立$\left\{\begin{array}{l}{y=\frac{b}{a}x}\\{{x}^{2}+{y}^{2}={a}^{2}}\end{array}\right.$,化为(a2+b2)x2=a4,解得M$(\frac{{a}^{2}}{c},\frac{ab}{c})$.直线A1M的方程为:化为:y=$\frac{b}{a+c}$(x+a),与双曲线方程联立化为:(2ac+c2)x2-2a3x-2a4-2a3c-a2c2=0.解得P.根据直线A2M和A2P的倾斜角互补,可得${k}_{{A}_{2}P}$+${k}_{{A}_{2}M}$=0,即可得出.

解答 解:A1(-a,0),A2(a,0).
如图所示,联立$\left\{\begin{array}{l}{y=\frac{b}{a}x}\\{{x}^{2}+{y}^{2}={a}^{2}}\end{array}\right.$,化为(a2+b2)x2=a4,即c2x2=a4,x>0,
解得x=$\frac{{a}^{2}}{c}$,y=$\frac{ab}{c}$,∴M$(\frac{{a}^{2}}{c},\frac{ab}{c})$.
直线A1M的方程为:y-0=$\frac{\frac{ab}{c}-0}{\frac{{a}^{2}}{c}+a}$(x+a),化为:y=$\frac{b}{a+c}$(x+a),
联立$\left\{\begin{array}{l}{y=\frac{b}{a+c}(x+a)}\\{\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,化为:(2ac+c2)x2-2a3x-2a4-2a3c-a2c2=0.
解得x=$\frac{2{a}^{2}c+a{c}^{2}+2{a}^{3}}{2ac+{c}^{2}}$,y=$\frac{2ab(a+c)}{2ac+{c}^{2}}$.
∴P($\frac{2{a}^{2}c+a{c}^{2}+2{a}^{3}}{2ac+{c}^{2}}$,$\frac{2ab(a+c)}{2ac+{c}^{2}}$).
∴${k}_{{A}_{2}P}$=$\frac{\frac{2ab(a+c)}{2ac+{c}^{2}}}{\frac{2{a}^{2}c+a{c}^{2}+2{a}^{3}}{2ac+{c}^{2}}-a}$=$\frac{b(a+c)}{{a}^{2}}$,
又${k}_{{A}_{2}M}$=$\frac{\frac{ab}{c}-0}{\frac{{a}^{2}}{c}-a}$=$\frac{b}{a-c}$.
∵直线A2M和A2P的倾斜角互补,
∴${k}_{{A}_{2}P}$+${k}_{{A}_{2}M}$=$\frac{b(a+c)}{{a}^{2}}$+$\frac{b}{a-c}$=0,
化为:a=b.
∴C的渐近线方程为:y=x.
故答案为:y=x.

点评 本题考查了双曲线与圆的标准方程及其性质、直线与圆及其双曲线相交问题、一元二次方程的根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知等差数列{an}的前3项和为4,后3项和为7,所有项和为22,则项数n为(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若非零函数f(x)对于任意的实数a,b均有f(a+b)=f(a)?f(b),且当x<0时,f(x)>1.
(1)求f(0)的值;
(2)求证:$f(-x)=\frac{1}{f(x)}$;
(3)求证:f(x)>0;
(4)求证:f(x)为减函数;
(5)当$f(4)=\frac{1}{16}$时,解不等式f(x2+x-3)?f(5-x2)≤$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.A,B两个工厂距一条河分别为400m和100m,A、B两工厂之间距离500m,且位于小河同侧.把小河看作一条直线,今在小河边上建一座供水站,供A,B两工厂用水,要使供水站到A,B两工厂铺设的水管长度之和最短,问供水站应建在什么地方?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{-\sqrt{x},x>0}\\{(x-\frac{1}{x})^{4},x<0}\end{array}\right.$,则f(f(2))=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题正确的是(  )
A.若a>b,则ac2>bc2B.若a>b>0,则a2>b2
C.若a>b,c<d,则 a-c<b-dD.若a<b<0,则$\frac{1}{a}<\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={3,32,33,…,3n}(n≥3),从中选出3个不同的数,使这3个数按一定的顺序排列构成等比数列,记满足此条件的等比数列的个数为f(n)
(Ⅰ)f(5)=8;
(Ⅱ)若f(n)=220,则n=22.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.为激发学生学习兴趣,老师上课时在黑板上写出三个集合:A={x|$\frac{[]x-1}{x}$}<0,B={x|x2-3x-4≤0},C={x|log${\;}_{\frac{1}{2}}$x>2};然后请甲、乙、丙三位同学到讲台上,并将“[]”中的数告诉了他们,要求他们各用一句话来描述,以便同学们能确定该数,以下是甲、乙、丙三位同学的描述,甲:此数为小于6的正整数;乙:A是B成立的充分不必要条件;丙:A是C成立的必要不充分条件.若三位同学说的都对,则符合条件的“[]”中的数的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$,P在边BC上且BP=2PC,则$\overrightarrow{AP}$=(  )
A.$\frac{4}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$B.$\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$C.$\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$D.$\frac{1}{3}\overrightarrow a+\frac{4}{3}\overrightarrow b$

查看答案和解析>>

同步练习册答案