精英家教网 > 高中数学 > 题目详情
某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.
(1)求走出迷宫时恰好用了1小时的概率;
(2)求走出迷宫的时间超过3小时的概率.
考查数学知识的实际背景,重点考查相互独立事件的概率乘法公式计算事件的概率、随机事件的数学特征和对思维能力、运算能力、实践能力的考查。
解:(1)设A表示走出迷宫时恰好用了1小时这一事件,则.
(2) 设B表示走出迷宫的时间超过3小时这一事件,则.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可以继续参加科目B的考试。每个科目只允许有一次补考机会,两个科目成绩均合格方可获得该项合格证书,现在某同学将要参加这项考试,已知他每次考科目A成绩合格的概率均为,每次考科目B成绩合格的概率均为。假设他在这项考试中不放弃所有的考试机会,且每次的考试成绩互不影响,记他参加考试的次数为
(Ⅰ)求的分布列和期望
(Ⅱ)求该同学在这项考试中获得合格证书的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某射手每次射击击中目标的概率是,且各次射击的结果互不影响。
(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率
(Ⅱ)假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率;
(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立
(1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列
(2)求生产4件甲产品所获得的利润不少于10万元的概率

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知函数是常数.
⑴若是从五个数中任取的一个数,是从三个数中任取的一个数,求函数为奇函数的概率.
⑵若是从区间中任取的一个数,是从区间中任取的一个数,求函数有零点的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 
已知在3支不同编号的枪中有2支已经试射校正过,1支未经试射校正。某射手若使用其中校正过的枪,每射击一次击中目标的概率为;若使用其中未校正的枪,每射击一次击中目标的概率为,假定每次射击是否击中目标相互之间没有影响。
(I)若该射手用这2支已经试射校正过的枪各射击一次,求目标被击中的次数为偶数的概率;
(II)若该射手用这3支抢各射击一次,求目标至多被击中一次的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某人射击1次击中目标的概率为0.6,经过3次射击,此人至少两次击中目标的概率为(  
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知(   )
A.—2B.2C.—12D.12

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为了调查胃病是否与生活规律有关,对某地70名40岁以上的人进行调查,结果如下:则有多大的把握认为患胃病与生活规律有关系
A.99.9℅B.99℅

患胃病
未患胃病
合计
生活无规律
5
15
20
生活有规律
40
10
50
合计
45
25
70
C.没有充分的证据显示有关D.1℅

查看答案和解析>>

同步练习册答案