精英家教网 > 高中数学 > 题目详情
20.设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图象,则f(2011)+f(2013)=(  )
A.3B.2C.1D.0

分析 利用函数的周期性结合函数在在区间(-2,1]上的图象,能求出f(2011)+f(2013)的值.

解答 解:设f(x)是定义在R上的周期为3的周期函数,
如图表示该函数在区间(-2,1]上的图象,
∴f(2011)+f(2013)=f(1)+f(0)=1+0=1.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的各项均为正数,且a2=4,a3+a4=24.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=3,b2=6,且{bn-an}是等差数列,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若α是第二象限角,那么$\frac{α}{2}$和2α都不是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知动点P(x,y)在椭圆C:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上,F为椭圆C的右焦点,若点M满足|$\overrightarrow{MF}$|=1且$\overrightarrow{PM}$•$\overrightarrow{MF}$=0,则|$\overrightarrow{PM}$|的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了解某班学生喜爱数学是否与性别有关,对本班50人进行了问卷调查,得到了如下的列联表:
喜爱数学不喜爱数学合 计
男  生20525      
女  生101525
合  计302050
已知在全部50人中随机抽取1人抽到喜爱数学的学生的概率为$\frac{3}{5}$.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱数学与性别有关?说明你的理由.
提示:K2=$\frac{n(ad-bc)^{2}}{(a+b)(b+c)(a+c)(b+d)}$
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x,y满足约束条件$\left\{\begin{array}{l}x≤2\\ y≤2\\ x+y≥1\end{array}\right.$,则$z=\frac{y}{x+1}$的取值范围是[-$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.流程图中的判断框,有1个入口和(  )个出口.
A.2B.3C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设${y_1}={a^{3x-1}},{y_2}={a^{1-2x}}$,其中a>0,a≠1,确定x为何值时,有
(1)y1=y2
(2)y1>y2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A={x|x2-x-2<0},B={0,1,2},则A∩B=(  )
A.{0}B.{1}C.{0,1,2}D.{0,1}

查看答案和解析>>

同步练习册答案