精英家教网 > 高中数学 > 题目详情

【题目】下表数据是水的温度x(℃)对黄酮延长性y(%)效应的试验结果,y是以延长度计算的.

x/℃

300

400

500

600

700

800

y/%

40

50

55

60

67

70

(1)画出散点图;

(2)指出x,y是否线性相关,若线性相关,求y关于x的回归方程;

(3)估计水的温度是1000 ℃时,黄酮延长性的情况.

【答案】(1)见解析; (2); (3).

【解析】

(1)根据表格数据得到散点图;(2)根据公式求得xy的平均值,再由公式得到;(3)x=1000代入回归方程得到估计值.

(1)散点图如下:

(2)由散点图可以看出样本点分布在一条直线的附近,可见y与x线性相关.

计算得=550,=57,.

因此所求的回归直线方程为.

(3)将x=1000代入回归方程得,即水的温度是1000 ℃时,

黄酮延长性大约是83.487%.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】网上购物系统是一种具有交互功能的商业信息系统,它在网络上建立一个虚拟的购物商场,使购物过程变得轻松、快捷、方便.网上购物系统分为前台管理和后台管理,前台管理包括浏览商品、查询商品、订购商品、用户注册等功能;后台管理包括公告管理、商品管理、订单管理、投诉管理和用户管理等模块.根据这些要求画出该系统的结构图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,D是直角△ABC斜边BC上一点,AC= DC.
(I)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD=2 ,求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:

第一车间

第二车间

第三车间

女工

173

100

y

男工

177

x

z

已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0. 15.

(1)求x的值;

(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cosθ,直线l的参数方程为 (t为参数,α为直线的倾斜角).
(I)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C有唯一的公共点,求角α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方
程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB两个投资项目的利润率分别为随机变量X1X2,根据市场分析,X1X2的分布列分别为

X1

5%

10%

P

0.8

0.2

X2

2%

8%

12%

P

0.2

0.5

0.3

(1)AB两个项目上各投资100万元,Y1Y2分别表示投资项目AB所获得的利润,求方差V(Y1)V(Y2)

(2)x(0≤x≤100)万元投资A项目,100x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某公司生产一种品牌服装的年固定成本为10万元,且每生产1万件,需要另投入1.9万元.R(x)(单位:万元)为销售收入,根据市场调查知R(x)= 其中x(单位:万件)是年产量.

(1)写出年利润W(单位:万元)关于年产量x的函数解析式.

(2)当年产量为多少时,该公司在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列语句中是命题的有________,其中是真命题的有_____(填序号).

①“垂直于同一条直线的两个平面必平行吗?”②“一个数不是正数就是负数”;③“在一个三角形中,大角所对的边大于小角所对的边”;④“x+y为有理数,x,y都是有理数”;⑤作一个三角形.

查看答案和解析>>

同步练习册答案