精英家教网 > 高中数学 > 题目详情

【题目】已知,其中.

1)当时,求函数单调递增区间;

2)求函数的图象在点处的切线方程;

3)是否存在实数的值,使得上有最大值或最小值,若存在,求出实数的取值范围;若不存在,请说明理由.

【答案】1;(2;(3)存在,.

【解析】

1)由题意,当时,求得,令,即可求解函数的单调递增区间;

2)由,求得,结合直线的点斜式方程,即可求解;

3)令,求得,结合,分类讨论,即可求解.

1)由题意,当时,,则

,解得

所以函数的单调递增区间为.

2)由函数,可得

解得

所以函数的图象在点处的切线方程为

.

3)由

可得.

①当时,即时,

所以

所以上单调递增,

所以上不存在最大值和最小值.

②当时,

设方程的两根为

的变化情况如下表:

0

0

递增

极大值

递减

极小值

递增

时,

时,.

所以要使上有最大值或最小值,只需满足,即有解.

所以

解得.

综上可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动直线轴交于点,过点作直线,交轴于点,点满足的轨迹为.

1)求的方程;

2)已知点,点,过作斜率为的直线交两点,延长分别交两点,记直线的斜率为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于⊙Ox2+y21来说,P是坐标系内任意一点,点P到⊙O的距离SP的定义如下:若PO重合,SPr;若P不与O重合,射线OP与⊙O的交点为ASPAP的长度(如图).

1)直线2x+2y+10在圆内部分的点到⊙O的最长距离为_____

2)若线段MN上存在点T,使得:

①点T在⊙O内;

P∈线段MN,都有STSP成立.则线段MN的最大长度为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知{an}是等差数列,其前n项和Snn22n+b1{bn}是等比数列,其前n项和Tn,则数列{ bn +an}的前5项和为(  )

A.37B.-27C.77D.46

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新高考最大的特点就是取消文理科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全理(选择物理、化学、生物)的选择是否与性别有关,觉得从某学校高一年级的名学生中随机抽取男生,女生各人进行模拟选科.经统计,选择全理的人数比不选全理的人数多.

1)请完成下面的列联表;

2)估计有多大把握认为选择全理与性别有关,并说明理由;

3)现从这名学生中已经选取了男生名,女生名进行座谈,从中抽取名代表作问卷调查,求至少抽到一名女生的概率.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,左、右顶点分别为AB,点M是椭圆C上异于AB的一点,直线AMy轴交于点P

(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;

(Ⅱ)设椭圆C的右焦点为F,点Qy轴上,且∠PFQ=90°,求证:AQBM

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个结论,正确的是(

①质检员从匀速传递的产品生产流水线上,每间隔15分钟抽取一件产品进行某项指标检测,这样的抽样是分层抽样;

②在回归直线方程中,当变量每增加一个单位时,变量增加0.13个单位;

③在频率分布直方图中,所有小矩形的面积之和是1

④对于两个分类变量,求出其统计量的观测值,观测值越大,我们认为有关系的把握程度就越大.

A.②④B.②③C.①③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为菱形,,平面底面上的一点.

1)证明:平面平面

2)若直线平面,且,求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点是曲线上的动点,点的延长线上,且,点的轨迹为

(1)求直线及曲线的极坐标方程;

(2)若射线与直线交于点,与曲线交于点(与原点不重合),求的最大值.

查看答案和解析>>

同步练习册答案