精英家教网 > 高中数学 > 题目详情
7.函数f(x)=x3-6x+5,x∈R.
(1)求函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有三个不同的实根,求实数a的取值范围.

分析 (1)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间,
(2)由(1)的分析可知y=f(x)图象的大致形状及走向,可知函数图象的变化情况,可知方程f(x)=a有3个不同实根,求得实数a的值.

解答 解:(1)f′(x)=3x2-6=3(x2-2),
令f′(x)<0,解得:-$\sqrt{2}$<x<$\sqrt{2}$,
令f′(x)>0,解得:x>$\sqrt{2}$或x<-$\sqrt{2}$,
∴函数f(x)的递减区间是$(-\sqrt{2},\sqrt{2})$,递增区间是$(-∞,-\sqrt{2})$与$(\sqrt{2},+∞)$;
当$x=-\sqrt{2}$时,有极大值$5+4\sqrt{2}$,当$x=\sqrt{2}$时,有极小值$5-4\sqrt{2}$;
(2)由(1)的分析可知y=f(x)图象的大致形状及走向,
∴当5-4$\sqrt{2}$<a<5+4$\sqrt{2}$时,
直线y=a与y=f(x)的图象有3个不同交点,
即方程f(x)=a有三解,
∴$5-4\sqrt{2}<a<5+4\sqrt{2}$.

点评 考查利用导数研究函数的单调性和图象,体现了数形结合的思想方法.本题是一道含参数的函数、导数与方程的综合题,需要对参数进行分类讨论.属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如果10N的力能使弹簧压缩10cm,为在弹性限度内将弹簧拉长6cm,则力所做的功为(  )
A.0.12 JB.0.18 JC.0.26 JD.0.28 J

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;            
(2)设bn=$\frac{a_n}{{{2^{n-1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=(x-1)n+(2-x)n(1<x<2,n∈N*)的最小值为an
(1)求an
(2)记bn=$\frac{1}{{{a_n}+{{(\frac{3}{4})}^{n-1}}}}$,求证:${b_1}+{b_2}+…+{b_n}<{(\frac{8}{5})^n}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$sin\frac{10π}{3}$的值是-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查得到了下表:
喜爱打篮球不喜爱打篮球合计
男生20525
女生1015[25
合计302050
下面的临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
则根据以下参考公式可得随机变量K2的值(保留三位小数),你认为有多大的把握认为喜爱打篮球与性别有关.(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{3}{x^3}$-ax+1(a∈R).
(1)当x=1时,f(x)取得极值,求a的值;
(2)求f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设随机变量X~B(2,p),Y~B(3,p),若P(X≥1)=$\frac{5}{9}$,则P(Y=2)=$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用红,黄,蓝,绿,黑这5种颜色给如图所示的四连圆涂色,要求相邻两个圆所图颜色不能相同,红色至少要涂两个圆,则不同的涂色方案种数为(  )
A.28B.32C.44D.56

查看答案和解析>>

同步练习册答案