精英家教网 > 高中数学 > 题目详情

(本题满分14分)如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°。E为线段AB的中点,将△ADE沿直线DE翻折成△A’DE,使平面A’DE⊥平面BCD,F为线段A’C的中点。

(Ⅰ)求证:BF∥平面A’DE;

(Ⅱ)设M为线段DE的中点,求直线FM与平面A’DE所成角的余弦值。

解析:本题主要考查空间线线、线面、面面位置关系,线面角等基础知识,同时考查空间想象能力和推理论证能力。

 (Ⅰ)证明:取A′D的中点G,连结GFCE,由条件易知

FGCDFG=CD.

BECD,BE=CD.

所以FGBE,FG=BE.

故四边形BEGF为平行四边形,

所以BF∥EG

因为平面,BF平面

所以 BF//平面

(Ⅱ)解:在平行四边形,ABCD中,设BC=a

  则AB=CD=2a,  AD=AE=EB=a,

  连CE

  因为

在△BCE中,可得CE=a,

在△ADE中,可得DE=a,

在△CDE中,因为CD2=CE2+DE2,所以CEDE,

在正三角形ADE中,MDE中点,所以AMDE.

由平面ADE⊥平面BCD,

可知AM⊥平面BCD,AMCE.

AE的中点N,连线NMNF

所以NFDE,NFAM.

因为DEAMM,

所以NF⊥平面ADE,

则∠FMN为直线FM与平面ADE新成角.

在Rt△FMN中,NF=a, MN=a, FM=a,

则cos=.

所以直线FM与平面ADE所成角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分)如图2,为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪,另外△AEF内部有一文物保护区域不能占用,经过测量AB=100m,BC=80m,AE=30m,AF=20m,应该如何设计才能使草坪面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)

         如图,已知直三棱柱ABC—A1B1C1,E是棱CC1上动点,F是AB中点,

   (1)求证:

   (2)当E是棱CC1中点时,求证:CF//平面AEB1

   (3)在棱CC1上是否存在点E,使得二面角A—EB1—B的大小是45°,若存在,求CE的长,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省济宁市高三第二次月考文科数学 题型:解答题

(本题满分14分)如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4.

(Ⅰ)若FDE的中点,求证:BE//平面ACF

(Ⅱ)求直线BE与平面ABCD所成角的正弦值

 

查看答案和解析>>

科目:高中数学 来源:2011年福建省高二上学期期末考试数学理卷 题型:解答题

(本题满分14分)如图,正方形的边长都是1,平面平面,点上移动,点上移动,若

(I)求的长;

(II)为何值时,的长最小;

(III)当的长最小时,求面与面所成锐二面角余弦值的大小.

 

查看答案和解析>>

科目:高中数学 来源:杭州市2010年第二次高考科目教学质量检测 题型:解答题

(本题满分14分)如图,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分别是C1A和C1B的中点。

   (1)求证:EF//平面ABC;

   (2)求证:平面平面C1CBB1;

   (3)求异面直线AB与EB1所成的角。

 

查看答案和解析>>

同步练习册答案