精英家教网 > 高中数学 > 题目详情

(本小题满分12分)定义在实数R上的函数y= f(x)是偶函数,当x≥0时,.

(Ⅰ)求f(x)在R上的表达式;

(Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).

 

【答案】

(Ⅰ);(Ⅱ)最大值1,单调递增区间是(-∞,-1和[0,1] ,单调递减区间是 [-1,0]和[1,+∞

单调递减区间是 [-1,0]和[1,+∞

【解析】

试题分析:解:(Ⅰ)设x<0,则- x>0,

∵f(x)是偶函数,∴f(-x)=f(x)         …………… 3

∴x<0时,

所以  ……………6

(Ⅱ)y=f(x)开口向下,所以y=f(x)有最大值f(1)=f(-1)=1

函数y=f(x)的单调递增区间是(-∞,-1和[0,1]       …………… 9

单调递减区间是 [-1,0]和[1,+∞       ……………12

考点:函数的奇偶性;函数的最值;函数的单调性;函数解析式的求法。

点评:利用函数的奇偶性求函数的解析式,这类问题的一般做法是:? ①“求谁设谁”?即求哪个区间上的解析式,x就设在哪个区间内; ②要利用已知区间的解析式进行代入; ③利用f(x)的奇偶性写出-f(x)或f(-x)?从而解出f(x)。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案