精英家教网 > 高中数学 > 题目详情

【题目】某公司为了了解一种新产品的销售情况,对该产品100天的销售数量做调查,统计数据如下图所示:

销售数量(件)

48

49

52

63

64

65

66

67

68

69

70

71

73

天数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

经计算,上述样本的平均值,标准差.

(Ⅰ)求表格中字母的值;

(Ⅱ)为评判该公司的销售水平,用频率近似估计概率,从上述100天的销售业绩中随机抽取1天,记当天的销售数量为,并根据以下不等式进行评判(表示相应事件的概率);

;②;③.

评判规则是:若同时满足上述三个不等式,则销售水平为优秀;仅满足其中两个,则等级为良好;若仅满足其中一个,则等级为合格;若全部不满足,则等级为不合格.试判断该公司的销售水平;

(Ⅲ)从上述100天的样本中随机抽取2个,记样本数据落在内的数量为,求的分布列和数学期望.

【答案】(Ⅰ)(Ⅱ)该公司的销售水平为合格.(Ⅲ)见解析,

【解析】

(Ⅰ)根据表中数据以及平均数的公式即可求解.

(Ⅱ)由平均值,标准差,结合表中数据求出以及,从而可得结论.

(Ⅲ)根据题意,的可能取值为012,在之间的有天,利用组合可得,列出分布列,进而求出期望.

(Ⅰ)依题意,

解得.

(Ⅱ)由题意得.

于是由表格得到,

.故该公司的销售水平为合格.

(Ⅲ)根据题意,的可能取值为012

所以

.

因此分布列是

0

1

2

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系内,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为

1)把曲线和直线化为直角坐标方程;

2)过原点引一条射线分别交曲线和直线两点,射线上另有一点满足,求点的轨迹方程(写成直角坐标形式的普通方程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:当时,函数有唯一的极值点;

2)设为正整数,若不等式内恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装店每年春季以每件15元的价格购入型号童裤若干,并开始以每件30元的价格出售,若前2个月内所购进的型号童裤没有售完,则服装店对没卖出的型号童裤将以每件10元的价格低价处理(根据经验,1个月内完全能够把型号童裤低价处理完毕,且处理完毕后,该季度不再购进型号童裤).该服装店统计了过去18年中每年该季度型号童裤在前2个月内的销售量,制成如下表格(注:视频率为概率).

2月内的销售量(单位:件)

30

40

50

频数(单位:年)

6

8

4

1)若今年该季度服装店购进型号童裤40件,依据统计的需求量试求服装店该季度销售型号童裤获取利润的分布列和期望;(结果保留一位小数)

2)依据统计的需求量求服装店每年该季度在购进多少件型号童裤时所获得的平均利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列的前项中的最大项为,最小项为,设.

1)若,求数列的通项公式;

2)若,求数列的前项和

3)若数列是等差数列,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区100名患者的相关信息,得到如下表格:

潜伏期(单位:天)

人数

85

205

310

250

130

15

5

1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);

2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;

潜伏期

潜伏期

总计

50岁以上(含50岁)

100

50岁以下

55

总计

200

附:

0.05

0.025

0.010

3.841

5.024

6.635

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点在圆上,直线交椭圆于两点.

1)求椭圆的方程;

2)若为坐标原点),求的值;

3)设点关于轴对称点为与点不重合),且直线轴交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知为抛物线上一点,斜率分别为的直线PAPB分别交抛物线于点AB(不与点P重合).

1)证明:直线AB的斜率为定值;

2)若△ABP的内切圆半径为.

i)求△ABP的周长(用k表示);

ii)求直线AB的方程.

查看答案和解析>>

同步练习册答案