已知且,当时,恒有
求的解析式;
若的解集为空集,求的范围。
科目:高中数学 来源: 题型:
22已知函数,若方程有且只有两个相异根0和2,且(1)求函数的解析式。(2)已知各项不为1的数列{an}满足,求数列通项an。(3)如果数列{bn}满足,求证:当时,恒有成立。
查看答案和解析>>
科目:高中数学 来源:2013-2014学年安徽省高三上学期第三次月考理科数学试卷(解析版) 题型:解答题
已知函数的定义域为,且同时满足以下三个条件:①;②对任意的,都有;③当时总有.
(1)试求的值;
(2)求的最大值;
(3)证明:当时,恒有.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省无为县四高三考理科数学试卷(解析版) 题型:解答题
(本小题满分12分)已知二次函数的图象过点(0,—3),且的解集(1,3)。
(1)求的解析式;
(2)若当时,恒有求实数t的取值范围。
查看答案和解析>>
科目:高中数学 来源:2012届江苏省高三数学国庆作业二(文科) 题型:解答题
已知二次函数的图象与x轴有两个不同的公共点,且,当时,恒有.
(1)当时,求不等式的解集;
(2)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,且,求a的值;
(3)若,且对所有恒成立,求正实数m的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com