分析 (1)利用两角和的正弦函数公式化简函数f(x)的解析式为f(x)=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{1}{2}$,由周期公式即可得解.
(2)由x∈[-$\frac{π}{2}$,0],可得2x-$\frac{π}{4}$∈[-$\frac{5π}{4}$,-$\frac{π}{4}$],利用正弦函数的图象和性质即可求得最大值和最小值.
解答 解:(1)∵f(x)=$\frac{1}{2}sin2x$-$\frac{1}{2}cos2x$+$\frac{1}{2}$=$\frac{1}{\sqrt{2}}$($\frac{\sqrt{2}}{2}$sin2x-$\frac{\sqrt{2}}{2}$cos2x)+$\frac{1}{2}$=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{1}{2}$,
∴函数f(x)的最小正周期T=$\frac{2π}{2}$=π.
(2)∵x∈[-$\frac{π}{2}$,0],
∴2x-$\frac{π}{4}$∈[-$\frac{5π}{4}$,-$\frac{π}{4}$],
∴sin(2x-$\frac{π}{4}$)∈[-1,$\frac{\sqrt{2}}{2}$],
∴当x∈[-$\frac{π}{2}$,0]时,f(x)=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{1}{2}$的最大值为:1,最小值为:$\frac{1-\sqrt{2}}{2}$.
点评 本题主要考查了两角和的正弦函数公式,周期公式,正弦函数的图象和性质,考查了计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | h(t)=10t | B. | h(t)=log2t | C. | h(t)=t2 | D. | $h(t)=\frac{1}{t}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com