精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\frac{1}{2}sin2x$-$\frac{1}{2}cos2x$+$\frac{1}{2}$.
(1)求函数f(x)的最小正周期;
(2)当x∈[-$\frac{π}{2}$,0]时,求函数f(x)的最大值和最小值.

分析 (1)利用两角和的正弦函数公式化简函数f(x)的解析式为f(x)=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{1}{2}$,由周期公式即可得解.
(2)由x∈[-$\frac{π}{2}$,0],可得2x-$\frac{π}{4}$∈[-$\frac{5π}{4}$,-$\frac{π}{4}$],利用正弦函数的图象和性质即可求得最大值和最小值.

解答 解:(1)∵f(x)=$\frac{1}{2}sin2x$-$\frac{1}{2}cos2x$+$\frac{1}{2}$=$\frac{1}{\sqrt{2}}$($\frac{\sqrt{2}}{2}$sin2x-$\frac{\sqrt{2}}{2}$cos2x)+$\frac{1}{2}$=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{1}{2}$,
∴函数f(x)的最小正周期T=$\frac{2π}{2}$=π.
(2)∵x∈[-$\frac{π}{2}$,0],
∴2x-$\frac{π}{4}$∈[-$\frac{5π}{4}$,-$\frac{π}{4}$],
∴sin(2x-$\frac{π}{4}$)∈[-1,$\frac{\sqrt{2}}{2}$],
∴当x∈[-$\frac{π}{2}$,0]时,f(x)=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{1}{2}$的最大值为:1,最小值为:$\frac{1-\sqrt{2}}{2}$.

点评 本题主要考查了两角和的正弦函数公式,周期公式,正弦函数的图象和性质,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在等比数列{an}中,已知a5-a1=15,a4-a2=6,若公比q>1,则a3=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右准线与x轴交于点A,点B的坐标为(0,a),若椭圆上的点M满足$\overrightarrow{AB}$=3$\overrightarrow{AM}$,则椭圆C的离心率值为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知命题P:$\lim_{n→∞}{c^n}=0$,其中c为常数,命题Q:把三阶行列式$|{\begin{array}{l}{\;5}&2&{3\;}\\{\;x-c}&6&{4\;}\\{\;1}&8&{x\;}\end{array}}|$中第一行、第二列元素的代数余子式记为f(x),且函数f(x)在$({-∞\;,\;\frac{1}{4}}]$上单调递增.若命题P是真命题,而命题Q是假命题,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若全集U=R,函数f(x)=$\sqrt{lo{g}_{2}(4x-3)}$的定义域为A,函数g(x)=$\sqrt{3-2x-{x}^{2}}$的值域为B,求A∪B和∁U(A∩B).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知an=n•2n,求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设a∈$\{-1,1,\frac{1}{2},3\}$,则使函数y=xa的定义域为R且为奇函数的a的集合为{1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=loga(2x+1)在区间$({-\frac{1}{2},0})$上满足f(x)>0.
(1)求实数a的取值范围;
(2)若$f(-\frac{1}{4})=1$,画出函数g(x)=$\left\{\begin{array}{l}f(x),(x>-\frac{1}{2})\\{2^x},(x≤-\frac{1}{2})\end{array}$的图象,并解不等式g(x)<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对函数f(x)=ax2+bx+c(a≠0)作x=h(t)的代换,则一定不改变函数f(x)值域的代换是(  )
A.h(t)=10tB.h(t)=log2tC.h(t)=t2D.$h(t)=\frac{1}{t}$

查看答案和解析>>

同步练习册答案