精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=
(1)设函数g(x)=f(x)﹣1,求函数g(x)的零点;
(2)若函数f(x1)=f(x2)=f(x3)=f(x4),且0<x1<x2<x3<x4≤10,求 的取值范围.

【答案】
(1)解:当0<x≤2时,由|log2x|=1解得x=2或

当2<x≤10时,由 解得x=10,

∴函数g(x)有3个零点,分别为x=2,


(2)解:设f(x1)=f(x2)=f(x3)=f(x4)=a,由题意可知函数f(x)的图象与直线y=a交于四个不同的点.

在同一坐标系内作出两个函数的图象:

结合图象,由题意可知,x3+x4=12;

由|log2x1|=|log2x2|知,﹣log2x1=log2x2,即x1x2=1.

若函数f(x)的图象与直线y=a图象始终有四个交点,则2<x3<4.

因2<x3<4,所以,

所以, 的取值范围为(9,21)


【解析】(1)分类讨论,当0<x≤2时,由|log2x|=1;当2<x≤10时,由 ,即可求函数g(x)的零点;(2)画出函数f(x)的图象,确定x1x2=1,x3+x4=12,2<x3<x4<10,由此可得则 的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知以点C(t, )(t∈R,t≠0)为圆心的圆过原点O.
(1)设直线3x+y﹣4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(2)在(1)的条件下,设B(0,2),且P、Q分别是直线l:x+y+2=0和圆C上的动点,求|PQ|﹣|PB|的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017辽宁鞍山市最后一次模】如图所示,在三棱锥,侧面, 是全等的直角三角形, 是公共的斜边且, ,另一侧面是正三角形.

(1)求证:

(2)若在线段上存在一点,使与平面,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017四川泸州四诊】如图,平面平面,四边形是菱形, .

(1)求证:

(2)若,且直线与平面所成角为,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 【2017江西4月质检】如图,四棱锥中,侧面底面 , ,点在棱上,且,点在棱上,且平面.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在过点(﹣5,﹣4)的直线l,使它与两坐标轴围成的三角形的面积为5?若存在,求出直线l的方程(化成直线方程的一般式);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.
(1)求抛物线C的方程;
(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且b=acosc+ csinA.
(1)求角A的大小;
(2)当a=3时,求△ABC周长的取值范围.

查看答案和解析>>

同步练习册答案