精英家教网 > 高中数学 > 题目详情

【题目】如图,在斜三棱柱 中,∠BAC=90°,BC1⊥AC,则点C1在平面ABC上的射影H必在( )

A.直线AB上
B.直线BC上
C.直线AC上
D.△ABC的内部

【答案】A
【解析】因为BC1⊥AC,AB⊥AC,BC1∩AB=B,所以AC⊥平面ABC1.
又AC平面ABC,所以平面ABC⊥平面ABC1.
又平面ABC∩平面ABC1=直线AB,
所以过点C1作C1H⊥平面ABC,则H∈AB,
即点C1在平面ABC上的射影H在直线AB上.
所以答案是:A.
【考点精析】根据题目的已知条件,利用直线与平面垂直的判定和直线与平面垂直的性质的相关知识可以得到问题的答案,需要掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想;垂直于同一个平面的两条直线平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥A﹣BCD中AB=AC=1,DB=DC=2,AD=BC= ,则三棱锥A﹣BCD的外接球的表面积为(
A.π
B.
C.4π
D.7π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+3ax2+3x+1,当x∈[2,+∞),f(x)≥0恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经问卷调查,某班学生对摄影分别执“喜欢”“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的是5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那全班学生中“喜欢”摄影的比全班学生人数的一半还多人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则将f(x)的图象向右平移 个单位所得曲线的一条对称轴的方程是(
A.x=π
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究“教学方式”对教学质量的影响,某高中数学老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).如图所示茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.
(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;
(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2表,并判断有多大把握认为“成绩优秀与教学方式有关”.

甲班

乙班

合计

优秀

不优秀

合计

下面临界值表仅供参考:

P(x2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.79

10.828

(参考公式:x2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列各曲线的标准方程
(1)实轴长为12,离心率为 ,焦点在x轴上的椭圆;
(2)焦点是双曲线16x2﹣9y2=144的左顶点的抛物线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ (x>0)过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N,设g(t)=|MN|,若对任意的正整数n,在区间[2,n+ ]内,若存在m+1个数a1 , a2 , …am+1 , 使得不等式g(a1)+g(a2)+…g(am)<g(am+1),则m的最大值为(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形ABCD的边长为2,若将正方形ABCD沿对角线BD折叠为三棱锥 ,则在折叠过程中,不能出现( )
A.
B.平面 平面CBD
C.
D.

查看答案和解析>>

同步练习册答案