精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.连线的斜率为时,直线的倾斜角为

1)求椭圆的标准方程;

2)若是以为直径的圆上的任意一点,求证:

【答案】1;(2)详见解析.

【解析】

1)由短轴长可知,设,由设而不求法作差即可求得,将相应值代入即求得,椭圆方程可求;

2)考虑特殊位置,即直线轴垂直时候,成立,当直线斜率存在时,设出直线方程,与椭圆联立,结合中点坐标公式,弦长公式,得到的关系,将表示出来,结合基本不等式求最值,证明最后的结果

解:(1)由已知,得

,两式相减,得

根据已知条件有,

时,

,即

∴椭圆的标准方程为

2)当直线斜率不存在时,,不等式成立.

当直线斜率存在时,设

化简,得

,则

当且仅当时取等号

当且仅当时取等号

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数gx)=x21

1)求fx)在点(0f0))处的切线方程.

2)若hx)=fx+gx)有两个极值点x1x2x1x2),求证:x1fx1)>x2fx2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若上恒成立,求实数的取值范围;

(Ⅲ)若数列的前项和 ,求证:数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个顶点为,焦点在轴上,中心在原点.若椭圆短轴的上顶点到直线的距离为.

1)求椭圆的标准方程;

2)若椭圆的下顶点为,设直线与椭圆相交于不同的两点,当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题. 该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.表 1是甲流水线样本的频数分布表,如图所示是乙流水线样本的频率分布直方图.

表1 甲流水线样本的频数分布表

质量指标值

频数

(1)若将频率视为概率,某个月内甲、乙两条流水线均生产了万件产品,则甲、乙两条流水线分别生产出不合格品约多少件?

(2)在甲流水线抽取的样本的不合格品中随机抽取两件,求两件不合格品的质量指标值均偏大的概率;

(3)根据已知条件完成下面列联表,并判断在犯错误概率不超过的前提下能否认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?

甲生产线

乙生产线

合计

合格品

不合格品

合计

附:(其中为样本容量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(Ⅰ)解不等式:

(Ⅱ)当时,函数的图象与轴围成一个三角形,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:

学时数

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);

(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.

(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?

非十分爱好该课程者

十分爱好该课程者

合计

男性

女性

合计

100

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,已知PB⊥底面ABCD,异面直线PACD所成角等于60°.

1)求直线PC和平面PAD所成角的正弦值的大小:

2)在棱PA上是否存在一点E,使得二面角A-BE-D的余弦值为?若存在,指出点E在棱PA上的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20197月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间(单位:年)的衰变规律满足(表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的______;经过测定,良渚古城遗址文物样本中碳14的质量是原来的,据此推测良渚古城存在的时期距今约在5730年到______年之间.(参考数据:,,)

查看答案和解析>>

同步练习册答案