精英家教网 > 高中数学 > 题目详情
20.已知过A(0,1)和B(4,0)且与x轴相切的圆只有一个,则圆的一般方程为x2+y2-8x-17y+16=0.

分析 用待定系数法求圆的方程,先设出圆的一般方程,因为点A(0,1)和B(4,0)在圆上,满足圆的方程,把两点坐标代入圆方程,又因为圆与x轴相切,所以圆心到x轴的距离等于半径,而这样的圆只有一个,所以由前面几个条件化简得到的方程有唯一解,即可求出圆的方程.

解答 解:设所求圆的方程为x2+y2+Dx+Ey+F=0.
∵点A、B在此圆上,∴E+F+1=0,①,4D+F+16=0②
又知该圆与x轴(直线y=0)相切,令y=0得,x2+Dx+F=0,
∴△=0,即D2-4F=0,③
由①、②、③,解得D=-8,E=-17,F=16.
圆的方程为x2+y2-8x-17y+16=0.
故答案为:x2+y2-8x-17y+16=0.

点评 本题主要考查待定系数法求圆的方程,一般可通过已知条件,设出所求方程,再寻求方程组进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设f(x)在[1,2015]上具有性质 P.现给出如下命题:
①f(x)在[1,2015]上不可能为一次函数;
②函数f(x2)在[1,$\sqrt{2015}$]上具有性质P;
③对任意x1,x2,x3,x4∈[1,2015],有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)];
④若f(x)在x=1008处取得最大值 2016,则f(x)=2016,x∈[1,2015].
其中真命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.实数x,y,z满足x2+y2+z2=1,则xy-yz的最小值为(  )
A.-$\frac{1}{2}$B.-$\frac{2}{3}$C.-$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}的前n项和为Sn=n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(1)求数列{an},{bn}的通项公式.
(2)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC其中一条边的两个端点是B(-3,0),C(3,0),另两条边所在直线的斜率之积是$\frac{1}{9}$.
(1)求顶点A的轨迹M的方程;
(2)若直线y=ax+1与(1)中的轨迹M交于P,Q两点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{m}$=($\sqrt{3}$cosx,2),$\overrightarrow{n}$=(2sinx,cos2x),函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$-1-t(t∈R).
(1)若方程f(x)=0在x∈[0,$\frac{π}{2}$]上有解,求t的取值范围;
(2)在△ABC中,a,b,c分别是A,B,C所对的边,当(1)中的t取最大值且f(A)=-1,b+c=4时,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.三台机器人位于同一直线上(如图所示),它们所生产的零件必须逐一送到一个检验台上,经检验合格后,才能送到下一道工序继续加工,已知机器人M1的工作效率是机器人M2的2倍,机器人M2的工作效率是机器人M3的3倍,问检验台放何处最好?(即各机器人到检验台所走距离的总和最小)

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽豪州蒙城县一中高二上月考一数学试卷(解析版) 题型:选择题

已知数列中,,且,则等于( )

A.18 B.19 C.20 D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知在平面直角坐标系中,圆C的方程为x2+y2-4x+2y+4=0,若圆心C到直线y=kx+2的距离不大于圆的直径,则实数k的取值范围是k≤$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案