精英家教网 > 高中数学 > 题目详情
1.从0、2、4、6、8这五个数字中任取2个,从1、3、5、7、9这五个数字中任取1个.
(1)问能组成多少个没有重复数字的三位数?
(2)求在(1)中的这些三位数中任取一个三位数恰好能被5整除的概率.

分析 (1)先求出从0、2、4、6、8这五个数字中任取2个数字中没有0,能组成没有重复数字的三位数的个数,再求出先求出从0、2、4、6、8这五个数字中任取2个数字中有0,能组成没有重复数字的三位数的个数,由此能求出能组成多少个没有重复数字的三位数.
(2)在(1)中的这260个三位数中,求出能被5整除的有多少个,由此能求出在(1)中的这些三位数中任取一个三位数恰好能被5整除的概率.

解答 解:(1)若从0、2、4、6、8这五个数字中任取2个数字中没有0,
则能组成${C}_{4}^{2}{C}_{5}^{1}{A}_{3}^{3}$=180个没有重复数字的三位数,
若从0、2、4、6、8这五个数字中任取2个数字中有0,
则能组成${C}_{4}^{1}{C}_{5}^{1}×2{{A}_{2}^{2}}_{\;}$=80个没有重复数字的三位数,
∴能组成180+80=260个没有重复数字的三位数.
(2)在(1)中的这260个三位数中,能被5整除的有:${C}_{4}^{1}{C}_{5}^{1}{A}_{2}^{2}$+${C}_{4}^{1}{C}_{4}^{1}{C}_{1}^{1}$=56个,
∴在(1)中的这些三位数中任取一个三位数恰好能被5整除的概率p=$\frac{56}{260}$=$\frac{14}{65}$.

点评 本题考查计数问题及概率的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.对任意的θ∈(0,$\frac{π}{2}$),不等式$\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$≥x2-x-11恒成立,则实数x的取值范围是(  )
A.[-3,4]B.[0,2]C.[-$\frac{3}{2}$,$\frac{5}{2}$]D.[-4,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.连续抛掷两次质地均匀的骰子得到的点数分别为m和n.
①设向量$\overrightarrow{a}$=(m,n),向量$\overrightarrow{b}$=(2,-2),若“$\overrightarrow{a}$•$\overrightarrow{b}$>0”记为事件A,求P(A)的值;
②求点A(m,n)落在区域x2+y2≤16内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知复数z=(a+2i)(1-bi),其中i是虚数单位.
(1)若z=5-i,求a,b的值;
(2)若z的实部为2,且a>0,b>0,求证:$\frac{2}{a}$+$\frac{1}{b}$≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a≥2${∫}_{0}^{\frac{π}{3}}$sinxdx,曲线f(x)=ax+$\frac{1}{a}$ln(ax+1)在点(1,f(1))处的切线的斜率为k,则k的最小值为(  )
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.考察下列等式:
cosθ+isinθ=a1+b1i,
(cosθ+isinθ)2=a2+b2i,
(cosθ+isinθ)3=a3+b3i,

(cosθ+isinθ)n=an+bni,
其中i为虚数单位,an,bn(n∈N*)均为实数.由归纳可得,当θ=$\frac{π}{2}$时,a2016+b2016的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在首项为63,公比为2 的等比数列{an}中,2016是该数列的(  )
A.第5项B.第6项C.第7项D.第8项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在三棱锥P-ABC中,PA⊥平面ABC,2AC=PC=2,AC⊥BC,F为AP的中点,M、N、D、E分别为线段PC、PB、AC、AB上的动点,且MN∥BC∥DE.
(I)求证:DE⊥面PAC;
(Ⅱ)若M是PC的中点,D是线段AC靠近A的一个三等分点,求二面角F-MN-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=$\left\{\begin{array}{l}a+{2^{-x}},\;\;\;x≤0\\ f(x-1),\;x>0\end{array}$,记g(x)=f(x)-x,若函数g(x)有且仅有两个零点,则实数a的取值范围是(-2,+∞).

查看答案和解析>>

同步练习册答案