精英家教网 > 高中数学 > 题目详情
直线y=kx+1(k∈R)与椭圆
x2
5
+
y2
m
=1
恒有公共点,则m的取值范围是(  )
分析:联立
y=kx+1
x2
5
+
y2
m
=1
,消去y得到(m+5k2)x2+10kx+5-5m=0,(m>0,m≠5),由题意必须满足△≥0,解出即可.
解答:解:联立
y=kx+1
x2
5
+
y2
m
=1
,消去y得到(m+5k2)x2+10kx+5-5m=0,(m>0,m≠5)
∵直线y=kx+1(k∈R)与椭圆
x2
5
+
y2
m
=1
恒有公共点,
∴△≥0,即100k2-20(1-m)(m+5k2)≥0,化为m2+5mk2-m≥0,
∵m>0,∴m≥-5k2+1,
∵-5k2+1≤1,∴m≥1(m≠5).
故选A.
点评:熟练掌握直线与椭圆的位置关系转化为直线方程与椭圆方程联立得到关于x的一元二次函数的△≥0的问题是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知直线y=kx+1(k∈R)与椭圆
x2
2
+
y2
m
=1总有交点,则m的取值范围为(  )
A、(1,2]
B、[1,2)
C、[1,2)∪[2,+∞)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=kx+1(k∈R)与焦点在x轴上的椭圆
x2
5
+
y2
t
=1恒有公共点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=kx+1 (k<0且k≠-
12
)与曲线ρ2sinθ-ρsin2θ=0的公共点的个数是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
3
2
,原点到过A(a,0),B(0,-b)两点的直线的距离是
4
5
5

(1)求椭圆的方程;
(2)已知直线y=kx+1(k≠0)交椭圆于不同的两点E,F,且E,F都在以B为圆心的圆上,求k的取值范围.

查看答案和解析>>

同步练习册答案