精英家教网 > 高中数学 > 题目详情

已知函数.

(1)求函数的定义域,并判断它的单调性(不用证明);

(2)若的反函数为,证明方程有解,且有唯一解;

(3)解关于的不等式.

(1)(2)证明略  (3)


解析:

(1)的定义域为

在定义域内是增函数;

       (2)令,即是方程的一个解

         设的另一个解,则由反函数的定义知

         这与矛盾,故方程有且只有一个解

       (3)由,且在定义域内是增函数,得

          ,解之得,

         所以原不等式的解集为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分14分)已知函数.(1) 求函数的最小正周期,并写出函数图象的对称轴方程;(2) 若,求函数的值域.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省济南市高三上学期期末考试理科数学试卷(解析版) 题型:解答题

已知函数

(1)求的单调区间;

(2)若,在区间恒成立,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015届浙江省宁波市高一下学期期中考试文科数学试卷(解析版) 题型:解答题

已知函数

(1)求函数的单调递减区间;

(2)当时,求函数的最值及相应的.

 

查看答案和解析>>

科目:高中数学 来源:2014届山东省济宁市高二5月质量检测理科数学试卷(解析版) 题型:解答题

已知函数

(1)求的单调区间;

(2)当时,判断的大小,并说明理由;

(3)求证:当时,关于的方程:在区间上总有两个不同的解.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省汕头市高三毕业班教学质量检测文科数学(含解析) 题型:解答题

(本题满分14分)

    已知函数

    (1)求的最小值;

(2)若对所有都有,求实数的取值范围.

 

 

查看答案和解析>>

同步练习册答案