精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a-sinB)cos(A+B)=0
(1)求C的大小;
(2)求a2+b2的最大值,并求取得最大值时角A,B的值.
考点:余弦定理的应用
专题:三角函数的求值,解三角形
分析:(1)利用三角形的内角转化为A的三角函数,利用两角和的正弦函数求解结合正弦定理求出表达式,求出结合即可.
(2)由余弦定理以及基本不等式求解最值即可.
解答: 解:(1)cosBsinC+(a-sinB)cos(A+B)=0
可得:cosBsinC-(a-sinB)cosC=0
即:sinA-acosC=0.
由正弦定理可知:
a
sinA
=
c
sinC

asinC
c
-acosC=0

∴asinC-acosC=0,
sinC-cosC=0,可得
2
sin(C-
π
4
)=0,C是三角形内角,
∴C=
π
4

(2)由余弦定理可知:c2=a2+b2-2abcosC,
得1=a2+b2-
2
ab
ab≤
a2+b2
2

(1-
2
2
)(a2+b2)≤1

即:a2+b2≤2+
2

A=B=
3
8
π
时,a2+b2取到最大值为2+
2
点评:本题考查三角形的最值,余弦定理的应用,正弦定理的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1-
x
5的展开式x2的系数是(  )
A、-5B、5C、-10D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-1,g(x)=a|x-1|.
(1)若x∈R时,不等式f(x)≥g(x)恒成立,求实数a的取值范围;
(2)求函数h(x)=|f(x)|+g(x)在区间[-2,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx-
π
6
)(ω>0)和g(x)=cos(2x+φ)(0<φ<π)的图象的对称轴相同.
(1)求满足题意的ω,φ的值;
(2)求F(x)=f(x)-g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆O1:x2+y2=1与圆O2:(x-3)2+y2=r2(r>0)内切,则r的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,电子青蛙从点A(0,0)出发,每跳一步只向上或右跳一单位长度,设每跳一步相互独立,且向上或向右的概率都为
1
2

(1)电子青蛙跳到点B(3,3)的概率为多少?
(2)若电子青蛙共跳6步到达点P,设点P在x轴的射影为Q,取|AQ|=X,求X的分布列及期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≤x-1
x≤3
x+y≥4
,则
y
x
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log3x,x>0
log
1
3
(-x),x<0
,若f(m)>f(-m),则实数m的取值范围是(  )
A、(-1,0)∪(0,1)
B、(-∞,-1)∪(1,+∞)
C、(-1,0)∪(1,+∞)
D、(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点P(4,1),且与x,y的正半轴交于点A,B,其中O为坐标原点.
(1)求直线l的方程,使△OAB的面积最小;
(2)求直线l的方程,是直线在两坐标上的截距之和最小;
(3)求|PA|•|PB|最小时,直线l的方程.

查看答案和解析>>

同步练习册答案